K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

loading...  loading...  loading...  

a,  AC = 36:3,6=10 (cm)

AB2 = 102-62= 64 , AB = 8  (cm)

9 tháng 9 2021

a/ dùng hệ thức lượng :

AC = 10cm

AB = 8cm

b/ AB2 - AD2 = CD2 - AD2 = DH.DF - DH.DE = DH(DF - DE) = DH.EF

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

=>AH\(\perp\)BC tại H

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\CA^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

b: ΔOAH cân tại O

mà OK là đường cao

nên OK là phân giác của \(\widehat{AOH}\)

Xét ΔOAD và ΔOHD có

OA=OH

\(\widehat{AOD}=\widehat{HOD}\)

OD chung

Do đó: ΔOAD=ΔOHD

=>\(\widehat{OAD}=\widehat{OHD}=90^0\)

=>HD\(\perp\)HO