CMR điều kiện cần và đủ để p và 8p^2+1 là các SNT là p=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(1) Điều kiện cần và đủ để C là trung điểm của đoạn AB là B A → = - 2 A C →
(3) Điều kiện cần và đủ để M là trung điểm của đoạn PQ là P Q → = 2 P M →
Phát biểu sai: (2) Điều kiện cần và đủ để C là trung điểm của đoạn AB là
Do đó câu (1) và câu (3) là đúng.
Chọn A.
Chọn A.
Ta có:
(1) Điều kiện cần và đủ để C là trung điểm của đoạn AB là
(3) Điều kiện cần và đủ để M là trung điểm của đoạn PQ là
Phát biểu sai: (2) Điều kiện cần và đủ để C là trung điểm của đoạn AB là
Do đó câu (1) và câu (3) là đúng.
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
Nếu p=2
8p-1=16-1=15 là hợp số trái với đề(TVĐ)
Nếu p=3
8p-1=8.3-1=24-1=23
8p+1=8.3+1=24+1=25 là hợp số
Nếu p>3
TH1:p=3k+1(vì p là số nguyên tố)
8p-1=8.(3k+1)-1=24k+8-1=24k+7
8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số
TH2:p=3k+2
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3
Mà p>3
=>8p-1>3
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)
Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
m2+mn+n2
=m2-2mn+n2+3mn
=(m-n)2+3mn chia hết cho 9
3mn chia hết cho 3
=>(m-n)2 chia hết cho 3
=>(m-n)2 chia hết cho 9
=>3mn chia hết cho 9
=>mn chia hết cho 3
=>m hoặc n chia hết cho 3
do tính chất của m;n tương đương nhau nên giả sử m chia hết cho 3
m-n chia hết cho 3
=>n chia hết cho 3
=>điều kiện cần và đủ để m^2+m.n+n^2 chia hết cho 9 là m,n chia hết cho 3
=>đpcm
Điều kiện cần:
(ký hiệu | nghĩa là "chia hết cho")
Nếu m và n đều | 3 thì m2 , n2 và m.n đều | 9 nên m2+n2+mn sẽ | 9
Điều kiện đủ:
Nếu m2+n2+mn | 9 ta sẽ cm m,n | 3
Ta có: m2+n2+mn = (m-n)2 + 3mn
=> 3mn | 9 <=> mn | 3 (1)
Mà (m-n)2 | 9 nên m-n | 3 (2)
Kết hợp (1) và (2) suy ra m,n đều | 3
Bạn vô chữ màu xanh này đi
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Thê p = 3 vào thì ta được
\(\hept{\begin{cases}p=3\\8p^2+1=73\end{cases}}\) là 2 số nguyên tố.
Xét \(p=3k⋮3\left(k\ne1\right)\)nên không phải số nguyên tố.
Xét \(p=3k+1\)
\(\Rightarrow8\left(3k+1\right)^2+1=72k^2+48k+9⋮3\)nên không phải số nguyên tố.
Xét \(p=3k+2\)
\(\Rightarrow8\left(3k+2\right)^2+1=72k^2+96k+33⋮3\)
Vậy để \(p,8p^2+1\)đồng thời là 2 số nguyên tố thì \(p=3\)