Bài 1: Cho đường tròn ( O ; R ), điểm A và B nằm trên đường tròn sao cho góc AOB = 120 độ, điểm C nằm trên cung AB sao cho góc AOC = 160 độ.
a) Liệt kê các góc ở tâm, và cho biết góc đó chắn cung nào?
b) Tính số đo cung nhỏ AB và cung lớn AnB, cung nhỏ BC, cung lớn BnC
Bài 2: Cho đường tròn ( O ; R ), dây AB = R
a) Tính số đo cung nhỏ AB và cung lớn AnB
b) Tính độ dài đoạn OI theo R với I là trung điểm AB
c) Tiếp tuyến A tại B cắt nhau tại M. Chứng minh 3 điểm O, I và M thẳng hàng
2:
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
=>Số đo cung nhỏ AB là 600
Số đo cung lớn AB là 360-60=3000
b: ΔOAB đều
mà OI là đường trung tuyến
nên \(OI=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\)
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường trung trực của AB(2)
Từ (1),(2) suy ra O,I,M thẳng hàng