Cho tam giác abc có 3 góc nhọn , kẻ ah vuông góc bc tại h , bít hc nhỏ hơn hb. Chứng minh ac nhỏ hơn ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Vì HC>HB nên đáy tam giác AHC> đáy tam giác AHB
Dựa vào định lý Pi-ta-go,ta có:
\(AH^2+CH^2=AC^2\); \(AH^2+HB^2=AB^2\)
Mà AC>AB nên \(AC^2>AB^2\)
Vậy AC>AB
áp dụng định lí Py-ta-go cho tam giác ABH vuông tại H ta có: AB2=AH2+BH2
áp dụng định lí Py-ta-go cho tam giác ACH vuông tại h ta có: AC2=AH2+CH2
mà CH>BH nên CH2>BH2
=>AH2+CH2>AH2+BH2=> AC2>AB2 => AC>AB => dpcm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
=>\(HB^2=6^2-4,8^2=12.96\)
=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\)
=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD
nên ΔAHD vuông cân tại H
Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)
nên IDBA là tứ giác nội tiếp
=>\(\widehat{AIB}=\widehat{ADB}=45^0\)
Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)
nên ΔAIB vuông cân tại A
=>AI=AB
Xét ΔABC có
BH là hình chiếu của AB
CH là hình chiếu của AC
CH<HB(gt)
Do đó: AC<AB(Định lí quan hệ giữa đường vuông góc và đường xiên)