K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

a: AB//CD
=>\(\widehat{DAB}+\widehat{ADC}=180^0\)

mà \(\widehat{DAB}-\widehat{ADC}=60^0\)

nên \(\widehat{ADC}=\dfrac{180^0-60^0}{2}=60^0\)

b: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔOAB đồng dạng với ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>OC=OD

OA+OC=AC

OB+OD=BD

mà OA=OB và OC=OD

nên AC=BD

=>ABCD chỉ là hình thang cân thôi chứ không là hình bình hành nha bạn

a: Xét ΔACD và ΔBDC có

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔOCD cân tại O

Suy ra: OC=OD

Ta có: OC+OA=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

24 tháng 12 2023

b) Theo Thales: \(\dfrac{DE}{DC}=\dfrac{AO}{AC};\dfrac{CF}{CD}=\dfrac{BO}{BD}\)

Theo câu a thì \(\dfrac{AO}{AC}=\dfrac{BO}{BD}\) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{CF}{CD}\Rightarrow DE=CF\) (đpcm)

c) Từ \(DE=CF\Rightarrow\dfrac{DE}{EF}=\dfrac{CF}{EF}\)

Mà theo Thales: \(\dfrac{DE}{EF}=\dfrac{IO}{OF};\dfrac{CF}{EF}=\dfrac{JO}{OE}\) 

Do đó \(\dfrac{IO}{OF}=\dfrac{JO}{OE}\) \(\Rightarrow\) IJ//CD//AB

d) Dùng định lý Menelaus đảo nhé bạn. Ta có \(\dfrac{HA}{HD}=\dfrac{AB}{CD}=\dfrac{OA}{OC}\) nê \(\dfrac{HA}{AD}.\dfrac{OC}{OA}=1\). Do K là trung điểm EF mà \(DE=CF\) nên K cũng là trung điểm CD hay \(\dfrac{KD}{KC}=1\). Do đó \(\dfrac{HA}{AD}.\dfrac{KD}{KC}.\dfrac{OC}{OA}=1\). Theo định lý Menalaus đảo \(\Rightarrow\)H, O, K thẳng hàng (đpcm)

 

9 tháng 1 2019

tau méch cô hoài nhá

9 tháng 1 2019

a) Xét tam giác ABD có :

 M là trung điểm của AB

 F là trung điểm của BD

=) MF là đường trung bình của tam giác ABD

=) MF//AD và MF=\(\frac{1}{2}\)AD    (1)

Xét tam giác tam giác ACD có :

 N là trung điểm CD

 E là trung điểm AC

=) NE là đường trung bình của tam giác ACD

=) NE//AD và NE=\(\frac{1}{2}\)AD     (2)

Từ (1) và (2) =) Tứ giác MENF là hình bình hành

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O