Cho tứ giác ABCD có 2 đường chéo AB và CD cắt nhau tại O chứng minh rằng tứ giác ABCD là hình thang cân (AB//CD) khi và chỉ khi 0A=0B và OC=CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài yêu cầu chứng minh ABCD là hình thang có AB và CD là đáy. Vậy ta sẽ dựa trên đặc điểm của hình thang và chứng minh.Đặc điểm của hình thang là: Hình thang là hình có một cặp cạnh đối diện song song. Ở đây cặp cạnh đó chính là: hai đáy AB và CD (vì AB và CD luôn song song với nhau). Hơn nữa, hình thang này cũng đáp ứng được yêu cầu là: OA/OC =OB/OD (lưu ý:cách loại hình tứ giác khác cũng có thể đáp ứng yêu cầu này.Tuy nhiên ở đây mình ghi thêm để việc chứng minh ABCD là hình thang có AB và CD là hai đáy)
Ta sẽ thử cách loại hình tứ giác khác như : hình bình hành,hình vuông , hình chữ nhật,hình thoi,.v.v. Ta thấy rằng các loại hình này đều đáp ứng được yêu cầu là: OA/OC = OB/OD. Tuy nhiên các hình này lại không đáp ứng được yêu cầu là 1 cặp cạnh đối diện song song vì những hình này đều có 2 cặp cạnh đối diện song song,đó là những cặp cạnh sau: AB và CD ; AD và BC. Vì vậy,suy cho cùng thì chỉ có hình thang là đáp ứng được tất cả mọi yêu cầu của đề bài. Vậy là ta đã chứng minh được ABCD là hình thang có AB và CD là hai đáy.
Ở bài này vì mình giải thích các lí do để cho bạn dễ hiểu nên bài này sẽ hơi dài.Mong bạn thông cảm! Nếu bạn hiểu rõ rồi thì bạn có thể lược bỏ một số phần giải thích đi. Nhưng mà mình cũng phải nói với bạn rằng mình ko chắc đâu nha!
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân) (2)
ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1
⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ACBD là hình thang cân.
a) Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)
Từ (1) và (2) suy ra MN//QP và MN=QP
Xét tứ giác MNPQ có
MN//QP(cmt)
MN=QP(cmt)
Do đó: MNPQ là hình bình hành
Xét ΔABD có
Q là trung điểm của AD
M là trung điểm của AB
Do đó: QM là đường trung bình của ΔABD
Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)
hay \(QM=\dfrac{AC}{2}\)(3)
Từ (2) và (3) suy ra QM=QP
Hình bình hành MNPQ có QM=QP(cmt)
nên MNPQ là hình thoi
cho đoạn thẳng AB và CD cắt nhau tại O sao cho OA=OC;OB=OD.Chứng minh tứ giác ABCD là hình thang cân
OA=OC,OB=OD=>AC=BD
Tứ giác có 2 đường chéo bằng nhau thì là hình thang cân
=>ABCD là hình thang cân
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ODC}=\widehat{OCD}\)
Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB