tìm hai số tự nhiên liên tiếp,biết rằng hiệu các bình phương của chúng bằng 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bé nhất trong 2 số đó là a (a thuộc N)
=> Số còn lại là a+1
Vì hiệu bình phương của chúng bằng 40 nên ta có phương trình sau:
(a+1)2 - a2 = 40
<=> a2 + 2a + 1 - a2 = 40
2a + 1 = 40
a = 19,5 (k thoả mãn a thuộc N)
Vậy, không tìm được 2 số thoả mãn đề bài
Bạn thử xem lại đề bài xem, vì 2 số tn liên tiếp sẽ 1 lẻ 1 chẵn, bình phương lên cũng 1 lẻ 1 chẵn, vậy hiệu phải là số lẻ chứ
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
Gọi 2 số tự nhiên đó là: a; a-1\(\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(a^2-\left(a-1\right)^2=31\)
\(\Leftrightarrow a^2-\left(a^2-2a+1\right)=31\)
\(\Leftrightarrow a^2-a^2+2a-1=31\)
\(\Leftrightarrow2a=31+1\)
\(\Leftrightarrow a=\dfrac{32}{2}=16\Rightarrow a-1=16=16-1=15\)
Vậy hai số đó là: \(15;16\)
Gọi hai số tự nhiên đó là a , a - 1 (a N*)
Theo đề, ta có :
Vậy : Hai số đó là 15; 16
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Gọi 2 số cần tìm là a và b (là số tự nhiên)
Theo bài ra ta có: a-b=2
a2-b2=36
=>(a-b)(a+b)=36
=>2(a+b)=36
=>a+b=18
=>a=(18+2):2=10
b=10-2=8
Vậy 2 số cần tìm là 10 và 8
À, bài 1 mk biết làm rồi nên mn chie cần trả lời câu thứ hai thui. Cảm ơn.
Cho mk xin lỗi mk biết làm bài 2 chứ không biết làm bài 1. Xin lỗi mn.
Đáp án A
Gọi số thứ nhất là a; a ∈ N, số thứ hai là b; b ∈ N Vì hai lần số thứ nhất hơn ba lần số thứ hai là 9 nên ta có:
Vì hiệu các bình phương của chúng bằng 119 nên ta có phương trình:
Vậy số lớn hơn là 12.
Gọi hai số đó có dạng: \(x,x+1\) (\(x\in N\))
Hiệu các bình phương của chúng là 31 nên ta có: \(\left(x+1\right)^2-x^2=31\) (1)
Giải phương trình (1) ta có:
\(\left(x+1\right)^2-x^2=31\)
\(\Leftrightarrow x^2-x^2+2x+1=31\)
\(\Leftrightarrow2x+1=31\)
\(\Leftrightarrow2x=30\)
\(\Leftrightarrow x=15\)
Vậy hai số đó là: \(15,16\)