Cho tam giác ABC có góc B =2 góc C.Vẽ Ah vuông góc vs BC tại H.Trên AB lấy D sao cho AD=HC.C/m đường thẳng DH luôn đi qua trung điểm của đoạn thẳng AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
Xét \(\Delta BAD\)(\(\widehat{A}=90^o\))và \(\Delta BHD\)(\(\widehat{H}=90^o\))có:
\(\widehat{ABD=\widehat{HBD}}\)(gt)
BD: cạnh chung
=> \(\Delta ABD=\Delta HBD\left(CH-GN\right)\)
=> AB=BH; AD=DC (2 cạnh t/ứng)
và \(\widehat{BDA=\widehat{BDC}}\)(2 góc t/ứng)
Xét \(\Delta ABH\)cân tại B(vì AB=BH[cmt]) có : BD là đường p.g
=> B là điểm thuộc đường trung trực AH (1)
Xét \(\Delta ADH\)cân tại D(vì AD=DH(cmt)) có: DB là đường p.g ( vì \(\widehat{BDA=\widehat{BDC}}\))
=> D là điểm thuộc đường trung trực AH (2)
Từ (1) và (2)=> BD là trung trực của đt AH
+ Xét \(\Delta ABD\)vuông tại A và \(\Delta HBD\)vuông tại H ( vì \(DH\perp BC\))
Có : BD là cạnh chung
\(\widehat{ABD}=\widehat{HBD}\)( Vì BD là p/g của góc B) => \(\Delta ABD=\Delta HBD\)( canh huyền-góc nhọn)
=> AB = HB
+ Gọi I là giao điểm của BD và AH
CM đc : \(\Delta ABI=\Delta HBI\)(c-g-c)
=> IA = IH ( 2 cạnh tương ứng) (1)
và \(\widehat{BIA}=\widehat{BIH}\)( 2 góc t.ư)
Vì \(\widehat{BIA}=\widehat{BIH};\widehat{BIA}+\widehat{BIH}=180^o\)( 2 góc k.bù)
=> \(\widehat{BIA}=\widehat{BIH}=\frac{180^o}{2}=90^o\Rightarrow BD\perp AH\)tại I (2)
Từ (1),(2) => BD là trung trực của đth AH