Cho B = 3/17 * 2/9 - 2/9 * 3/34.
Tìm giá trị của 1/B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu tính bn vít lại đề ik, khó hỉu wa
2) a. x2 + 5x = x.(x + 5) âm
=> x.(x + 5) < 0
=> x và x + 5 trái dấu
Mà x < x + 5
=> x < 0; x + 5 > 0
=> x < 0; x > -5
=> x thuộc {-4 ; -3; -2; -1}
b. 3.(2x + 3).(3x - 3)
= 3.(2x + 3).3.(x - 1)
= 9.(2x + 3).(x - 1) âm
=> 9.(2x + 3).(x - 1) < 0
=> (2x + 3).(x - 1) < 0
=> (2x + 3).(2x - 2) < 0
Mà 2x + 3 > 2x - 2
=> 2x + 3 > 0; 2x - 2 < 0
=> 2x > -3; 2x < 2
=>x > -3/2; x < 1
=> x > -2; x < 1
=> x thuộc {-1; 0}
\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)
\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)
\(=>1+\frac{16}{21}-\frac{20}{15}\)
\(=>\frac{37}{21}-\frac{20}{15}\)
\(=>\frac{3}{7}\)
\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)
\(=>12-8\cdot\frac{27}{8}\)
\(=>12-27\)
\(=>-15\)
\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)
\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)
\(=>\left(1^{2005}\right)-16\)
\(=>1-16\)
\(=>-15\)
a) \(\left(\dfrac{1}{6}+\dfrac{5}{9}\right)+\dfrac{4}{9}\)
\(=\dfrac{1}{6}+\dfrac{5}{9}+\dfrac{4}{9}\)
\(=\dfrac{1}{6}+1\)
\(=\dfrac{7}{6}\)
b) \(\dfrac{3}{17}+\left(\dfrac{14}{17}-\dfrac{2}{3}\right)\)
\(=\dfrac{3}{17}+\dfrac{14}{17}-\dfrac{2}{3}\)
\(=1-\dfrac{2}{3}\)
\(=\dfrac{1}{3}\)
c) \(\left(\dfrac{3}{2}-\dfrac{2}{3}\right)+\dfrac{7}{6}\)
\(=\left(\dfrac{9}{6}-\dfrac{4}{6}\right)+\dfrac{7}{6}\)
\(=\dfrac{13}{6}+\dfrac{7}{6}\)
\(=\dfrac{20}{6}\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{x^2-9}=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
b: \(B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
B = \(\dfrac{3}{17}\)x \(\dfrac{2}{9}\) - \(\dfrac{2}{9}\) x \(\dfrac{3}{34}\)
B = \(\dfrac{2}{9}\) x \(\left(\dfrac{3}{17}-\dfrac{3}{34}\right)\)
B = \(\dfrac{2}{9}\) x \(\dfrac{3}{34}\)
B = \(\dfrac{1}{51}\)
=> \(\dfrac{1}{B}\) = 51