K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2023

\(2n=0\)

\(\Rightarrow n=0:2\)

\(\Rightarrow n=\dfrac{0}{2}\)

NV
16 tháng 9 2020

Xét khai triển:

\(\left(x-1\right)^{2n}=C_{2n}^0-C_{2n}^1x+C_{2n}^2x^2-C_{2n}^3x^3+...-C_{2n}^{2n-1}x^{2n-1}+C_{2n}^{2n}x^{2n}\)

Thay \(x=1\) ta được:

\(0=C_{2n}^0-C_{2n}^1+C_{2n}^2-C_{2n}^3+..-C_{2n}^{2n-1}+C_{2n}^{2n}\)

\(\Leftrightarrow C_{2n}^0+C_{2n}^2+...+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+C_{2n}^{2n-1}\)

5 tháng 12 2023

Với \(n\in\mathbb{N^*}\), ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^{2n}\ge0\forall x\\\left(y-1\right)^{2n}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^{2n}+\left(y-1\right)^{2n}\ge0\forall x,y\)

Mà: \(\left(x+1\right)^{2n}+\left(y-1\right)^{2n}=0\)

nên: \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy ...

9 tháng 3 2020

\(p=2a^{2n+1}+5a^{2n+1}-3a^{2n}-7a^{2n}+3a^{2n1}\)

\(p=\left(2a^{2n+1}+5a^{2n+1}+3a^{2n+1}\right)+\left(-3a^{2n}-7a^{2n}\right)\)

\(\Rightarrow P=10a^{2n+1}+\left(-10a\right)^{2n}\)

Mà \(2n⋮2\)còn \(2n+1⋮2̸\)

Do đó \(a>2\)thì\(P>0\)

cHÚC BẠN HỌC TÔT ~!!!

10 tháng 3 2020

\(P=10a^{2n+1}-10a^{2n}>0\Leftrightarrow10a^{2n+1}>10a^{2n}\Leftrightarrow10a^{2n}.a>10a^{2n}\Leftrightarrow\hept{\begin{cases}a>0\\a>1\end{cases}\Leftrightarrow a>1}\)

10 tháng 7 2016

\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)

=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)

=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)

=>.....