K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

2n+1=a^2 (1), 3n+1=b^2 (2)

Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn

suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1

(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)

suy ra 5n chia hết cho 8, suy ra n chia hết cho 8

Ta cần chứng minh n chia hết cho 5

Số chính phương có các tận cùng là 0,1,4,5,6,9

Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5

Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)

13 tháng 3 2021
Chịu lớp 8 thì thôi
5 tháng 3 2018

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

26 tháng 3 2019

Vì 2n+1 là số chính phương lẻ nên

2n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)

Do đó: n⋮3

Vậy ta có đpcm.

26 tháng 3 2019

Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

⇒2n+1=1(mod8)⇒2n+1=1(mod8)

=> n ⋮⋮ 4

=> n chẵn

=> n+1 cũng là số lẻ

⇒n+1=1(mod8)⇒n+1=1(mod8)

=> n ⋮⋮ 8

Mặt khác :

3n+2=2(mod3)3n+2=2(mod3)

⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ

⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

 Bạn tham khảo: !!!

13 tháng 4 2021

Ta có: 2n+1 là số chính phương lẻ (do n tự nhiên)

nên 2n+1 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+1 lẻ

Mà n+1 là số chính phương

=> n+1 chia 8 dư 1

=> n chia hết cho 8 (1)

 

Giả sử n không chia hết cho 3

Vì n+1 là số chính phương nên chia 3 dư 1 hoặc chia hết cho 3

=> n chia hết cho 3 hoặc chia 3 dư 2 

Mà n không chia hết cho 3

=> n chia 3 dư 2

=> 2n+1 chia 3 dư 2 (vô lý vì số chính phương chia 3 dư 0 hoặc 1)

=> giả sử sai

=> n chia hết cho 3 (2)

 

Mặt khác : BCNN (8,3)=24 (3)

Từ (1)(2)(3) => n chia hết cho 24

13 tháng 4 2021

$2n+1$ là số chính phương nên $2n+1 \equiv 0;1(mod3)$
Với $2n+1 \equiv 0 (mod 3)$ mà $n \equiv 0;2 (mod 3)$ do $n+1$ là scp nên ta loại
Với $2n+1 \equiv 1 (mod 3)$ hay $2n \equiv 0(mod3)$

Hay $n \equiv 3$

$2n+1 \equiv 1 (mod 8)$ nên $2n \equiv 0 (mod 8)$

suy ra $n \vdots 4$
$n+1 \equiv 1 (mod8)$

Nên $n \vdots 8$

$n \vdots 3$

$(8;3)=1$ nên $n \vdots 24$ hay $n$ là bội của 24

 

13 tháng 7 2019

#)Giải :

a)Theo đầu bài, ta có : \(n=a^2+b^2\)

\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)

\(\Rightarrowđpcm\)

b)Theo đầu bài, ta có : \(2n=a^2+b^2\)

\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)

\(\Rightarrowđpcm\)