Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+1=a^2 (1), 3n+1=b^2 (2)
Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn
suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1
(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)
suy ra 5n chia hết cho 8, suy ra n chia hết cho 8
Ta cần chứng minh n chia hết cho 5
Số chính phương có các tận cùng là 0,1,4,5,6,9
Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5
Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)
Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)
=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 => \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)
Vậy n chia hết cho 8
Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)
Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1
=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)
\(\Rightarrow b^2-a^2\)chia hết cho 3
Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3
Như vậy \(n⋮3,n⋮8\) mà (3,8) = 1
=> \(n⋮24\)
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
Đặt 2n+1 = k^2
3n+1 = m^2
Có : m^2 + k^2 = 5n + 2
=> m^2 + k^2 chia 5 dư 2
Giả sử m^2 chia hết cho 5
và k^2 chia 5 dư 2
-> chữ số tận cùng của k^2 là 2 hoặc 7 (loại)
=> m^2 chia 5 dư 1
k^2 chia 5 dư 1
=> m^2 - k^2 chia hết cho 5
=> n chia hết cho 5 (1)
Có: 2n+1 là số lẻ
=> k^2 lẻ
=> k lẻ
Đặt k = 2t+1
=> 2n+1 = (2t+1)^2
=> n = 2t(t+1)
=> n chia hết cho 2
=> 3n +1 lẻ
=> k^2 lẻ
=> k lẻ
k^2 = 3n+1
=> 3n = (k-1)(k+1)
Vì k lẻ => (k-1)(k+1) là 2 số chẵn liên tiếp
=> 3n chia hết cho 8
mà 3 không chia hết cho 8
=> n chia hết cho 8 (2)
Từ (1) và (2) ta có : n chia hết cho 40