tính tổng : B = 5 + 53 + 52 + ... 597 + 599
ghi rõ lời giải ra nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
A = 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
2A = 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101
A = 2A – A = ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 – 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100
= 2 101 - 1
Vậy A = 2 101 - 1
b, Ta có.
B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99
5 2 B = 5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
25B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101
25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) – ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )
24B = 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 – 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99
24B = 5 101 - 5
B = 5 101 - 5 24 = 5 5 100 - 1 24
Vậy B = 5 5 100 - 1 24
Ta có D = 5 + 53 + 55 + ... + 597 + 599
52D = 53 + 55 + 57 + ... + 599 + 5101
52D - D = ( 53 + 55 + 57 + ... + 599 + 5101 ) - ( 5 + 53 + 55 + ... + 597 + 599 )
24D = 5101 - 5
D = \(\dfrac{5^{101}-5}{24}\)
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
từ 52 đến 102 có
(102-52) :2 +1=26 số hạng
(102+52)x26:2=2002
vậy tổng của các chữ số 52+54+56+...+102 là 2002
tk cho mình nha
Số số hạng của dãy số đó là :
( 102 - 52 ) : 2 + 1 = 26 ( số )
Tổng các số đó là :
( 102 + 52 ) x 26 : 2 = 2002
Đáp số : 2002
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
S= 2+(-3)+4+(-5)+.......+2012+(-2013)+2014
= [2+(-3)]+[4+(-5)]+.......+[2012+(-2013)]+2014 (gồm 2012 cặp)
= (-1)+(-1)+(-1)+...+(-1)+2014
= (-1).2012+2014
= -2012+2014
= 2
8 + 12 + 16 + 20 + .......... + 100
Dãy số trên có số số hạng là :
( 100 - 8 ) : 4 + 1 = 24 ( số hạng )
Tổng trên bằng :
( 100 + 8 ) x 24 : 2 = 1296
Đáp số : 1296
Có : \(B=5+5^3+5^5+....+5^{97}+5^{99}\)
\(5^2.B=5^3+5^5+....+5^{97}+5^{99}+5^{101}\)
\(25B-B=\left(5^3+5^3+.....+5^{97}+5^{99}+5^{101}\right)-\left(5+5^3+......+5^{99}\right)\)
\(24B=5^{101}-5\)
\(B=\frac{5^{101}-5}{24}\)