K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107`

\(\left(3^{2021}+3^{2020}\right)\div3^{2020}\\ =3^{2021}\div3^{2020}+3^{2020}\div3^{2020}\\ =3^{2021-2020}+3^{2020-2020}\\ =3+1=4\)

29 tháng 9 2023

giúp đê

8 tháng 10 2021

\(\Rightarrow12x-33=3\\ \Rightarrow12x=36\\ \Rightarrow x=3\)

26 tháng 10 2021

x:{12--33 }=100000000000000000000000000000

21 tháng 4 2023

Trường nào đó?

 

 

`@` `\text {Ans}`

`\downarrow`

`a)`

Ta có: `2020` là lũy thừa bậc chẵn

`=>`\(\left(-3\right)^{2020}=3^{2020}\)

`M = `\(3^{2020}-3^{2020}=0\)

`=> 0 = 0`

`=> M = N`

`b)`

`M =`\(\left(-3\right)^{2021}+3^{2020}\)

`=`\(3^{2020}-3^{2021}\)

Vì \(3^{2021}>3^{2020}\)

`=>`\(3^{2020}-3^{2021}< 0\)

`N = [ (-3)]^0`

`= (-3)^0`

`= 1`

Vì `1 > 0`

`=> M < N.`

`@` `\text {Duynamlvhg}`

a: M=3^2020-3^2020=0

b: M=-3^2021+3^2020=-3^2020(3-1)=-3^2020*2<0

N=[(-3)]^0=1

=>M<N

AH
Akai Haruma
Giáo viên
25 tháng 3 2023

Lời giải:

$3^{2022}=3^2.3^{2020}=9.3^{2020}< 10.3^{2020}$

25 tháng 3 2023

32022 và 10*32020

32022 = 32020.32= 32020.9

Vì 32020= 32020 và 10>9 

=> 10*32020 > 32020.9

Vậy 32022 < 10*32020

29 tháng 11 2021

Toàn mấy câu khó .-.

29 tháng 11 2021

Uh khó thật ._.

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$

$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$

Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$ 

Bạn xem lại đề.

DT
24 tháng 10 2023

A = ( 1 + 3^2) + (3^4 + 3^6) + ... + (3^2016 + 3 ^2018 ) + 3 ^ 2020

= 10 + 3^4(1+3^2) + .... + 3^2016.(1+3^2) + 3^2020

= 10.(1+3^4+...+3^2016) + 3^2020

Mà : 3^n có tận cùng là : 1,3,9,7

Do đó 3 ^2020 không chia hết cho 10

Lại có 10.(1+3^4+...+3^2016) chia hết cho 10

=> A không chia hết cho 10

24 tháng 10 2023

A=(1+32)+(34+36)+ ... + (32018+32020)

  =(1+32)+ 34(1+32)+....+32018(1+32)

  =(1+32) (1+34+....+32018)

  =10 (1+34+....+32018) ⋮10 ( do 10 ⋮10)

Vậy A=1+32+34+36+ ... +32020 ⋮ 10 (đpcm)

 

2 tháng 12 2019

NX: VT ≥ 0 nên VP = 2020x – 2020 ≥ 0 ó x ≥ 1

Khi đó x − 1 2020 > 0 , x − 2 2020 > 0 , ... , x − 2019 2020 > 0  

Phương trình trở thành

x − 1 2020 + x − 2 2020 + x − 3 2020 + ... + x − 2019 2020 = 2020 x − 2020  

ó 2019x - ( 1 2020 + 2 2020 + ... + 2019 2020 )  = 2020x – 2020

ó 2019x - 1 + 2 + 3 + ... + 2019 2020  = 2020x – 2020

ó 2019x - ( 1 + 2019 ) .2019 2.2020  = 2020x – 2020

ó 2019x - 2019/2 = 2020x – 2020

ó 2020 - 2019/2 = 2020x – 2019x

ó x = 2021/2 (TM)

Vậy phương trình có nghiệm x = 2021/2

Đáp án cần chọn là: A

A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]

A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]

A=[1+3+3^2+3^3] NHÂN[1+...+3^2018

A=40 nhân [1+...+3^2018]

=> A chia hết cho 40