K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2023

\(A=-x^2-6x+1\)

\(=-x^2-6x-9+10\)

\(=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)

\(=-\left(x+3\right)^2+10\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy \(Max_A=10\) khi \(x=-3\)

NV
22 tháng 4 2021

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)

22 tháng 9 2016

a) \(x^2+2x+3\)

\(=x^2+2x+1+2\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Ta có:

\(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+1\right)^2+2\ge2\)

Vậy MinA = 2 khi

\(\left(x+1\right)^2+2=2\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

22 tháng 9 2016

MIN A = 2 <=> X= -1 
MIN B = 7/4 <=> X = -1/2
MAX E = 10<=> X= 3 
MAX P = `<=> X= 1

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Bạn coi lại xem có viết nhầm chỗ nào trong biểu thức không? Biểu thức này nội việc rút gọn thôi đã "xấu" rồi.