Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
\(\frac{x+2}{x^2+4}\in Z\Rightarrow x+2⋮x^2+4\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)⋮x^2+4\)
\(\Rightarrow x^2-4⋮x^2+4\)
Mà \(x^2+4⋮x^2+4\)
\(\Rightarrow\left(x^2+4\right)-\left(x^2-4\right)⋮x^2+4\)
\(\Rightarrow8⋮x^2+4\)
\(\Rightarrow x^2+4\inƯ\left(8\right)\)
Mà \(x^2+4\ge0+4=4\Rightarrow x^2+4\in\left\{4;8\right\}\)
\(\Rightarrow x^2\in\left\{0;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
Với \(x=-2\Rightarrow\frac{x+2}{x^2+4}=\frac{0}{4+4}=0\in Z\left(TM\right)\)
Với \(x=0\Rightarrow\frac{x+2}{x^2+4}=\frac{2}{0+4}=\frac{1}{2}\notin Z\left(0TM\right)\)
Với \(x=2\Rightarrow\frac{x+2}{x^2+4}=\frac{4}{4+4}=\frac{1}{2}\notin Z\left(0TM\right)\)
Do đó \(x=-2\)
Vậy ...
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!
A + 1 = x^2+1+6x+8/x^2+1
= x^2+6x+9/x^2+1
= (x+3)^2/x^2+1 >= 0
=> A >= -1
Dấu "=" <=> x+3=0 <=> x=-3
Vậy ............
Tk mk nha
\(A=-x^2-6x+1\)
\(=-x^2-6x-9+10\)
\(=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)
\(=-\left(x+3\right)^2+10\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+3\right)^2+10\le10\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy \(Max_A=10\) khi \(x=-3\)