K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

- Ta dùng êke với cạnh góc vuông đi qua đỉnh B

- Cạnh góc vuông còn lại của êke nằm trùng với AC

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta nhận thấy 2 hình bằng nhau (chồng lên nhau vì vừa khít)

5 tháng 12 2018

Ta có: góc AB’M là góc ngoài của tam giác MB’C

Nên ∠(BMC) + ∠C= (AB'M) ⇒ ∠(AB'M) > ∠C

27 tháng 3 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ BK ⊥ AC (K ∈ AC).

Trong tam giác vuông BKC có:

∠ K B C   =   9 ° o   –   30 °   =   60 ° = >   ∠ K B A   =   60 °   –   38 °   =   22 °

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét tam giác ANB vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

=> AN = ABsinABN = 5,93.sin38° ≈ 3,65(cm)

b) Xét tam giác ANC vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

17 tháng 4 2018

a) Xét tam giác ACK và tam giác FAM có :

AC = FA

\(\widehat{CAK}=\widehat{AFM}\)  (Cùng phụ với góc \(\widehat{FAK}\)  )

\(\widehat{ACK}=\widehat{FAM}\)   (Cùng phụ với góc \(\widehat{DAC}\)  )

\(\Rightarrow\Delta ACK=\Delta FAM\left(g-c-g\right)\)

b) Do \(\Delta ACK=\Delta FAM\left(cma\right)\Rightarrow FM=AK\)

Chứng minh hoàn toàn tương tự câu a ta có: \(\Delta ABK=\Delta EAM\left(g-c-g\right)\)

\(\Rightarrow ME=AK\)

Từ đó suy ra FM = ME hay M là trung điểm EF.

c) Kéo dài FB cắt EC tại J. Ta chứng minh \(\widehat{FJE}=90^o\)

Xét tam giác FAB và tam giác CAE có:

FA = CA

AB = AE

\(\widehat{FAB}=\widehat{CAE}\)   (Cùng phụ với góc \(\widehat{BAC}\)  )

\(\Rightarrow\Delta FAB=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow FB=CE\) và \(\widehat{AFB}=\widehat{ACE}\)

Xét tứ giác AFJE có:

\(\widehat{AFJ}+\widehat{FJE}+\widehat{JEA}+\widehat{EAF}=360^o\)

\(\Rightarrow\widehat{ACE}+\widehat{FJE}+\widehat{CEA}+\widehat{EAC}+90^o=360^o\)

\(\Rightarrow\widehat{FJE}+\widehat{ACE}+\widehat{CEA}+\widehat{EAC}=270^o\)

\(\Rightarrow\widehat{FJE}+180^o=270^o\)

\(\Rightarrow\widehat{FJE}=90^o\)

Vậy nên \(FB\perp EC\) (đpcm).

17 tháng 4 2018

Bài 2:

A B C H I M N B' C' D E

a) Gọi giao điểm của đường phân giác ^ABC và ^ACB với AC và AB lần lượt là E và D

Dễ thấy: ^BAH=^ACB (Cùng phụ với ^HAC) => 1/2. ^BAH = 1/2. ^ACB

=> ^DAM=^ACD. Mà ^DAM+^MAC=^BAC=900 => ^ACD+^MAC=900 => AM \(\perp\)CD

hay NI\(\perp\)AM. 

Tương tự ta chứng minh MI\(\perp\)AN

Xét tam giác MAN: NI\(\perp\)AM; MI\(\perp\)AN => I là trực tâm của tam giác MAN (đpcm).

b) Do I là trực tâm của tam giác AMN (cmt) => AI\(\perp\)MN hay AI\(\perp\)B'C'

Ta có: Tam giác ABC có 2 đường phân giác ^ABC và ^ACB cắt nhau tại I => AI là phân giác ^BAC

=> AI là phân giác ^B'AC'.

Xét tam giác AB'C': AI là phân giác ^B'AC'. Mà AI\(\perp\)B'C' => Tam giác AB'C' cân tại A

 Lại có: ^B'AC'=900 => Tam giác B'AC' vuông cân tại A.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a: ΔANB vuông tại N

=>tan B=AN/NB

=>AN=NB*tan38

ΔANC vuông tại N

=>AN=NC*tan30

=>NB*tan38=NC*tan30

=>NB/NC=tan30/tan38\(\simeq0,74\)

=>NB=0,74NC

mà NB+NC=11

nên \(NB\simeq4,68\left(cm\right);NC\simeq6,32\left(cm\right)\)

AN=NC*tan30=6,32*tan30\(\simeq3,65\left(cm\right)\)

b: góc BAC=180-38-30=180-68=112 độ

Xét ΔABC có BC/sinA=AC/sinB

=>\(AC=\dfrac{11}{sin112}\cdot sin38\simeq7,3\left(cm\right)\)

9 tháng 9 2019

Giải bài 9 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

Chứng minh tam giác vuông:

Giải bài 9 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7