Vẽ hình minh họa và viết giả thiết, kết luận của định lí: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình trên biểu thị đường thẳng x' cắt 2 đườg thẳng x và y tạo nên các cặp góc so le trong, ngoài, đồng vị bằng nhau
Kí hiệu :
GT đường thẳng a và d cùng vuông góc vs 1 đường thẳng
KL a và b song song
a:
GT | góc AOB và góc COD là hai góc đối đỉnh |
KL | góc AOB=góc COD |
b:
GT | a\(\perp\)b, c\(\perp\)b |
KL | a//c |
GT:Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba
KL:Chúng song song với nhau.
Giả thiết: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba
Kết luận: chúng song song với nhau
a)
GT |
a \(\perp\) c b \(\perp\) c |
KL | a // b |
b)
GT |
a // c b // c |
KL | a // b |
c) Giả sử có 2 đường thẳng phân biệt a,b cùng vuông góc với một đường thẳng c.
Ta có: \(\widehat {{A_1}} = \widehat {{B_2}}\), mà hai góc này ở vị trí đồng vị nên a//b (Dấu hiệu nhận biết 2 đường thẳng song song)
Như vậy, định lí trên có thể được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai đường thẳng song song.