K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

x/y=y/z=z/x

=> x*z = 2*y = x*y = 2*z

Ta có :

x*z = x*y 

=> z=y

Ta có :

x*z = 2*y = y*y

Mà y = z (cmt)

=> x*z = y*z

=>x=y

Mà y = z (cmt)

=> x=y=z

đặt x=a/(b-c)

y=b/(c-a)

z=c/(a-b)

khi đó đẳng thức cần cm trở thành:

(x+y+z)(1/x+1/y+1/z)=9

<=>1+x/y+x/z+y/x+1+y/z+z/x+z/y+1=9

<=>3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)=9

<=>x/y+y/x+x/z+z/x+y/z+z/y=6  (1)

dùng bđt :x/y+y/x>=2 với mọi x;y>0

khi đó x/y+y/x+x/z+z/x+y/z+z/y>=6  dấu "=" xảy ra khi x=y=z>0 (2)

từ (1) và (2)=>x=y=z

<=>a/(b-c)=b/(c-a)=c/(a-b)

....

a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)

c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)

d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)

29 tháng 6 2019

a) x²+4xy+4y² b)x(9-x²) = 9x-x³ c)25-10x+x² d)9+6y+x²

28 tháng 10 2017

a:b:c=2:4:5 =>a/2 = b/4 = c/5.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2

a/2 = 2 => a = 4

b/4 = 2 => b = 8

c/5 = 2 => c = 10

28 tháng 10 2017

a:b:c=2:4:5 =>a/2 = b/4 = c/5.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/2 = b/4 = c/5 = a + b + c/2 + 4 + 5 = 22/11 = 2

a/2 = 2 => a = 4

b/4 = 2 => b = 8

c/5 = 2 => c = 10

 P/s tham khảo nha

3 tháng 2 2016

bài này khó thật đấy

3 tháng 2 2016

bài này cô tôi bảo dễ haizz :D

8 tháng 10 2016

\(\left(a+b+c\right)^3\)

\(=\left[\left(a+b\right)+c\right]^3\)

\(VT=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+3ab\left(a+b\right)+b^2+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

=>đpcm

8 tháng 10 2016

nhân vp ra 

 

25 tháng 3 2019

Đặt: \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}}\)

\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(2A=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}\)

\(2A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge6\)

\(\Leftrightarrow A\ge3."="\Leftrightarrow a=b=c\)