1. Tính giá trị biểu thức
13/21+15/13+14/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2/5 x 25/29) + (3/5 x 25/29)
= (50/145) + (75/145)
= 125/145
b) (5/2 x 3/7) - (3/14 : 6/7)
= 15/14 - (3/14 x 7/6)
= 15/14 - 1/2
= (30/28) - (14/28)
= 16/28
= 4/7
c) (15/4 : 5/12) - (6/5 : 11/15)
= (15/4 x 12/5) - (6/5 x 15/11)
= 180/20 - 90/55
= 9 - 18/11
= (99/11) - (18/11)
= 81/11
= 7 4/11
a) (2/3) + (20/21 x 3/2 x 7/5)
= 2/3 + (60/210)
= 2/3 + 2/7
= (14/21) + (6/21)
= 20/21
b) (5/17 x 21/32 x 47/24 x 0)
= 0
c) (11/3 x 26/7) - (26/7 x 8/3)
= (286/21) - (208/21)
= 78/21
= 3 9/21
= 3 3/7
a) (25/8) : x = 5/16
=> (25/8) x (16/5) = x
=> 4 = x
b) x + (7/15) = 6/15
=> x = (6/15) - (7/15)
=> x = -1/15
c) x : (28/49) = 7/12
=> x x (49/28) = 7/12
=> x = (7/12) x (28/49)
=> x = 1/2
a) 6 x x = (5/8) : (3/4)
=> 6x = (5/8) x (4/3)
=> 6x = 20/24
=> 6x = 5/6
=> x = (5/6) / 6
=> x = 5/36
câu,b,không,đủ,thông,tin,nhan,bạn.
\(13-\sqrt{\left(\sqrt{2}-3\right)^2}\)
=13-/\(\sqrt{2}\)-3/
=13-(3-\(\sqrt{2}\))
=13-3+\(\sqrt{2}\)
=10\(\sqrt{2}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-2.2\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{2}-1-2+\sqrt{2}\)
\(=2\sqrt{2}-3\)
1) \(13-\sqrt{\left(\sqrt{2}-3\right)^2}=13-\left|\sqrt{2}-3\right|=13+\sqrt{2}-3=10+\sqrt{2}\)
2) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}=\left|\sqrt{2}-1\right|-\left|2-\sqrt{2}\right|=\sqrt{2}-1-2+\sqrt{2}=2\sqrt{2}-3\)
x=7
=>x+1=8
=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5
=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5
=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5
=x-5
=>A=7-5=2
Vậy A=2 khi x=7
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
\(C=\left(1-2-3-4\right)+...+\left(197-198-199-200\right)\)
=-8x25=-200
\(D=-\left(11+13+...+99\right)+\left(10+12+...+98\right)\)
=(-1)+(-1)+...+(-1)
=-1x45=-45
Bài 1:
\(\left(\frac{9}{4}:\frac{6}{5}\right)-1=\frac{45}{24}-1=\frac{15}{8}-1=\frac{7}{8}\)
\(2+\left(\frac{1}{4}\times\frac{2}{5}\right)=2+\frac{2}{10}=2+\frac{1}{5}=\frac{11}{5}\)
Bài 2:
\(\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}\)
\(1-\frac{9}{11}=\frac{1}{1}-\frac{9}{11}=\frac{11}{11}-\frac{9}{11}=\frac{2}{11}\)
\(\frac{7}{9}\times\frac{3}{14}=\frac{21}{126}=\frac{3}{18}\)
\(\frac{15}{7}:\frac{5}{21}=\frac{315}{35}=9\)
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
2,
a) \(315-\left(135-x\right)=215\)
\(\Rightarrow135-x=315-215\)
\(\Rightarrow135-x=100\)
\(\Rightarrow x=135-100\)
\(\Rightarrow x=35\)
b) \(x-320:32=25\cdot16\)
\(\Rightarrow x-10=5^2\cdot4^2\)
\(\Rightarrow x-10=20^2\)
\(\Rightarrow x-10=400\)
\(\Rightarrow x=410\)
c) \(3\cdot x-2018:2=23\)
\(=3\cdot x-1009=23\)
\(\Rightarrow3\cdot x=1032\)
\(\Rightarrow x=1032:3\)
\(\Rightarrow x=344\)
d) \(280-9\cdot x-x=80\)
\(\Rightarrow280-x\cdot\left(9+1\right)=80\)
\(\Rightarrow280-10\cdot x=80\)
\(\Rightarrow10\cdot x=280-80\)
\(\Rightarrow10\cdot x=200\)
\(\Rightarrow x=20\)
e) \(38\cdot x-12\cdot x-x\cdot16=40\)
\(\Rightarrow x\cdot\left(38-12-16\right)=40\)
\(\Rightarrow x\cdot10=40\)
\(\Rightarrow x=40:10\)
\(\Rightarrow x=4\)
\(\frac{13}{21}\)+\(\frac{15}{13}\)+\(\frac{14}{5}\)
=\(\frac{845}{1365}\)+\(\frac{1575}{1365}\)+\(\frac{3822}{1365}\)
=\(\frac{6242}{1365}\)