K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

\(\sqrt[]{a+b}>\sqrt[]{a}-\sqrt[]{b}\) \(\left(a;b>0;a>b\right)\)

\(\Leftrightarrow\left(\sqrt[]{a+b}\right)^2>\left(\sqrt[]{a}-\sqrt[]{b}\right)^2\)

\(\Leftrightarrow a+b>a+b-2\sqrt[]{ab}\)

\(\Leftrightarrow2\sqrt[]{ab}>0\left(luôn.đúng\right)\)

Vậy \(\sqrt[]{a+b}>\sqrt[]{a}-\sqrt[]{b}\)

20 tháng 4 2017

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)

Y
9 tháng 5 2019

\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)

\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)

\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)

A = 3 \(\Leftrightarrow a=b=c=1\)

Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)

9 tháng 5 2019

\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)

\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)

\("="\Leftrightarrow a=b=c=1\)

21 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{na+mb}+\dfrac{b}{nb+ma}\)

\(=\dfrac{a^2}{na^2+mab}+\dfrac{b^2}{nb^2+mab}\)

\(\ge\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\). Cần chứng minh BĐT

\(\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\ge\dfrac{2}{m+n}\)

Điều này đúng vì tương đương với \(\left(a-b\right)^2\left(m-n\right)\ge0\forall a,b,m,n>0;m>n\)

6 tháng 9 2016

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

25 tháng 6 2015

+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.

+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)+ bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.

+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.

Vậy: a,b,c > 0

25 tháng 4 2019

sao th2 k suy ra ab>0 và c<0 nên abc<0 luôn