K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))

\(\Leftrightarrow x^2=5+\sqrt{13+x}\)

\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)

\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)

Xét (*) ta có VT \(\ge3\) (1)

mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)

Từ (1) và (2) dễ thấy (*) vô nghiệm 

Hay x = 3