Tìm đk và rút gọn , tìm x để A < 0 , tính A biết x = 3-2\(\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x>0; x\neq 1; x\neq 9$
\(A=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)+(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-1)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{x-1-(x-9)}{(\sqrt{x}-3)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{8}{(\sqrt{x}-1)(\sqrt{x}-3)}\)
\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)(\sqrt{x}-3)}{8}=\frac{\sqrt{x}-3}{8\sqrt{x}}\)
Để $A<0\Leftrightarrow \frac{\sqrt{x}-3}{8\sqrt{x}}<0$
$\Leftrightarrow \sqrt{x}-3<0$ (do $8\sqrt{x}>0$)
$\Leftrightarrow \sqrt{x}<3$
$\Leftrightarrow 0\leq x< 9$
Kết hợp với đkxđ suy ra $0< x< 9; x\neq 1$
Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2$
$\Rightarrow \sqrt{x}=\sqrt{2}-1$
Khi đó: $A=\frac{\sqrt{x}-3}{8\sqrt{x}}=\frac{\sqrt{2}-4}{8(\sqrt{2}-1)}=\frac{-2-3\sqrt{2}}{8}$
sao chỗ x−1−(x−9) lại là trừ ạ đáng lẽ nó phải là (x−1)+(x−9) chứ ạ
a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)
Để |P|>P thì P<0
=>căn x-2<0
=>0<x<4
=>x=1
\(a,ĐK:x\ne3;x\ge1\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\\ b,A=4\left(2-\sqrt{3}\right)\\ \Leftrightarrow\sqrt{x-1}+\sqrt{2}=8-4\sqrt{3}\\ \Leftrightarrow\sqrt{x-1}=8-4\sqrt{3}-\sqrt{2}\\ \Leftrightarrow x-1=\left(8-4\sqrt{3}-\sqrt{2}\right)^2\\ \Leftrightarrow x=\left(8-4\sqrt{3}-\sqrt{2}\right)^2+1=...\\ d,A=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow x-1=0\Leftrightarrow x=1\)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
A=\(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A= \(\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)=\(\frac{2x-2\sqrt{x}-\sqrt{x}+1}{x-1}=\frac{2\sqrt{x}-1}{x+1}\)
Để A=1/2 thì
\(\frac{2\sqrt{x}-1}{x+1}=\frac{1}{2}\)
nhân chéo ta đc pt \(x-4\sqrt{x}+3=0\)
giải pt ta đc x=1 (loại) hoặc x= 9
vậy x=9 TM
Để A<1 thì \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\Leftrightarrow\sqrt{x}< 2\)
=> x<4
vậy vs 0\(\le x< 4\) và x khác 1 TM
Mình nghĩ thế này ạ
a) Với \(x\ge0,x\ne1\)ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1x}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Kết luận :
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\) (ĐK: \(x>0;x\ne1;x\ne9\))
\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1+x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{2x-10}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{2\left(x-5\right)}\)
\(=\dfrac{\sqrt{x}-3}{2\sqrt{x}\left(x-5\right)}\)
\(=\dfrac{\sqrt{x}-3}{2x\sqrt{x}-10\sqrt{x}}\)
\(A>0\) khi
\(\dfrac{\sqrt{x}-3}{2x\sqrt{x}-10\sqrt{x}}>0\)
TH1:
\(\sqrt{x}-3>0\) và \(2x\sqrt{x}-10\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}>3\) và \(2\sqrt{x}\left(x-5\right)>0\)
\(\Leftrightarrow x>9\) và \(x>5\)
\(\Leftrightarrow x>9\)
TH2:
\(\sqrt{x}-3< 0\) và \(2x\sqrt{x}-10\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}< 3\) và \(2\sqrt{x}\left(x-5\right)< 0\)
\(\Leftrightarrow x< 9\) và \(x< 5\)
\(\Leftrightarrow x< 5\)
Vậy A > 0 khi \(\left[{}\begin{matrix}x>9\\x< 5\end{matrix}\right.\)
Ta có:
\(x=3-2\sqrt{2}=\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2=\left(\sqrt{2}-1\right)^2\)
\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-3}{2\cdot\left(\sqrt{2}-1\right)^2\cdot\sqrt{\left(\sqrt{2}-1\right)^2}-10\cdot\sqrt{\left(\sqrt{2}-1\right)^2}}\)
\(A=\dfrac{\left|\sqrt{2}-1\right|-3}{2\cdot\left(3-2\sqrt{2}\right)\cdot\left|\sqrt{2}-1\right|-10\cdot\left|\sqrt{2}-1\right|}\)
\(A=\dfrac{\sqrt{2}-1-3}{\left(6-4\sqrt{2}\right)\left(\sqrt{2}-1\right)-10\left(\sqrt{2}-1\right)}\)
\(A=\dfrac{\sqrt{2}-4}{6\sqrt{2}-6-8+4\sqrt{2}-10\sqrt{2}+10}\)
\(A=\dfrac{\sqrt{2}-4}{-4}\)
\(A=\dfrac{4-\sqrt{2}}{4}\)