Tương tự, thực hiện cách dựng như trên với tứ giác \(ABCD\). Trên tia \(OA,OB,OC,OD\) lần lượt lấy các điểm \(A',B',C',D'\) sao cho \(OA' = 2OA,OB' = 2OB,OC' = 2OC,OD' = 2OD\) (Hình 2).
Tính và so sánh các tỉ số \(\frac{{A'B'}}{{AB}};\frac{{A'D'}}{{AD}};\frac{{B'C'}}{{BC}};\frac{{C'D'}}{{CD}}\).
- Vì \(OA' = 2OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{2}\);\(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{2}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{2}{1} = 2\).
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\).
Xét tam giác \(OA'D'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\)
Do đó, \(A'D'//AD\) (định lí Thales đảo)
Vì \(A'D'//AD \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OD}}{{OD'}} = \frac{{AD}}{{A'D'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'D'}}{{AD}} = \frac{2}{1} = 2\).
- Vì \(OB' = 2OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).
Xét tam giác \(OB'C'\) có:
\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)
Do đó, \(B'C'//BC\) (định lí Thales đảo)
Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{2}{1} = 2\).
- Vì \(OD' = 2OD \Rightarrow \frac{{OD}}{{OD'}} = \frac{1}{2}\);\(OC' = 2OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{2}\).
Xét tam giác \(OD'C'\) có:
\(\frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{1}{2}\)
Do đó, \(D'C'//DC\) (định lí Thales đảo)
Vì \(D'C'//DC \Rightarrow \frac{{OD}}{{OD'}} = \frac{{OC}}{{OC'}} = \frac{{DC}}{{D'C'}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{D'C'}}{{DC}} = \frac{2}{1} = 2\).
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{C'D'}}{{CD}} = \frac{{A'D'}}{{AD}}\).