K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNP có

H là trung điểm của MN

I là trung điểm của MP

Do đó: HI là đường trung bình

=>HI//NP và HI=NP/2(1)

Xét ΔPQN có

J là trung điểm của PQ

K là trung điểm của QN

Do đó: JK là đường trung bình

=>JK//PN và JK=PN/2(2)

Từ (1) và (2) suy ra HI//KJ và HI=KJ

hay HKJI là hình bình hành

b: Để HKJI là hình thoi thì HJ⊥KI

hay MP⊥NQ

19 tháng 11 2021

Hình bình hành.

19 tháng 11 2021

Hình bình hành

25 tháng 1 2018

Đáp án B

Ta có: MN // BS ⇒ C M C B = C N C S

MQ // CD // AB (do ABCD là hình bình hành nên AB //CD) ⇒ C M C B = D Q D A

NP // CD ⇒ C N C S = D P D S

Do đó: D P D S = D Q D A  PQ // SA (Định lý Ta - lét trong tam giác SAD)

Lại có MN // BS và SB ∩  SA = S

Do đó MN không thể song song với PQ

Xét tứ giác MNPQ có NP // MQ (//CD)

Do đó MNPQ là hình thang.

Vậy khẳng địn (1) và (3) đúng.

Đáp án B

1: Xét ΔABC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔADC có DP/DC=DQ/DA

nên QP//AC và QP/AC=DP/DC=1/2

=>QP=1/2AC

=>MN//PQ và MN=PQ

Xét ΔABD có AM/AB=AQ/AD=1/2

nên MQ/BD=AM/AB=1/2

=>MQ=1/2BD

Xét ΔCBD có CP/CD=CN/CB=1/2

nên NP=1/2BD

=>MQ=NP=1/2BD

mà BD=AC

nên MQ=NP=QP=MN

2: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

MN=MQ

=>MNPQ là hình thoi

25 tháng 7 2023

cảm ơn bạn nhiều nha 

a) Ta có: \(MI=IN=\dfrac{MN}{2}\)(I là trung điểm của MN)

\(QK=KP=\dfrac{QP}{2}\)(K là trung điểm của QP)

mà MN=QP(Hai cạnh đối trong hình bình hành MNPQ)

nên MI=IN=QK=KP

Ta có: \(MN=2\cdot MQ\)(gt)

mà \(MN=2\cdot MI\)(I là trung điểm của MN)

nên MQ=MI

Xét tứ giác MIKQ có 

MI//QK(MN//QP,I\(\in\)MN, \(K\in QP\))

MI=QK(cmt)

Do đó: MIKQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành MIKQ có MI=MQ(cmt)

nên MIKQ là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Ta có: \(\widehat{QMN}+\widehat{AMN}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{AMN}=180^0-\widehat{QMN}=180^0-120^0\)

hay \(\widehat{AMI}=60^0\)

Ta có: MI=MQ(cmt)

mà AM=MQ(M là trung điểm của AQ)

nên AM=MI

Xét ΔMAI có AM=MI(cmt)

nên ΔMAI cân tại M(Định nghĩa tam giác cân)

Xét ΔMAI cân tại M có \(\widehat{AMI}=60^0\)(cmt)

nên ΔMAI đều(Dấu hiệu nhận biết tam giác đều)

c) Ta có: AI=AM(ΔAMI đều)

mà \(AM=MQ\)(M là trung điểm của AQ)

nên AI=MQ

mà \(MQ=\dfrac{MN}{2}\)(gt)

nên \(AI=\dfrac{MN}{2}\)

Xét ΔAMN có 

AI là đường trung tuyến ứng với cạnh MN(I là trung điểm của MN)

\(AI=\dfrac{MN}{2}\)(cmt)

Do đó: ΔAMN vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(\widehat{NAM}=90^0\)

Ta có: AM=MQ(M là trung điểm của AQ)

mà MQ=NP(Hai cạnh đối trong hình bình hành MNPQ)

nên AM=NP

Xét tứ giác AMPN có 

AM//NP(MQ//NP, A\(\in\)MQ)

AM=NP(cmt)

Do đó: AMPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMPN có \(\widehat{NAM}=90^0\)(cmt)

nên AMPN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

20 tháng 1 2022

hình vuông

20 tháng 1 2022

Tứ giác MNPQ là hình vuông

16 tháng 8 2017

Vì M,N lần lượt là trung điiểm của AB và AC (tgt)

=> MN // BC và MN = 1/2 BC (t/c)đường TB của tam giác)(1)

Vì P,Q ltrung điểm của  CD và BD 

=> PQ//BC và PQ=1/2 BC (t/c đg Tb ...)(2)

Từ (1)và(2) => MN//PQ và MN = PQ

=> MNPQ là hbh

30 tháng 11 2018

Bạn tự vẽ hình nha
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT ) 
=> DE là đường trung bình của tam giác MNP
=> DE = NP/2 (1)
CMTT :  DG = MQ/2 (2)
        và FG = NP/2 (3)
        và EF =MQ/2 (4)
Từ (1), (2), (3), (4), Mà NP = MQ ( GT )
=> DE = EF = FG= GD
Xét tứ giác DEFG có :
DE = EF = FG= GD ( CMT )
=> DEFG là hình thoi
Vậy  DEFG là hình thoi

Bạn tự vẽ hình nha
Câu b)
Xét tam giác MNP có :
D là trung điểm MN ( GT )
E là trung điểm MP ( GT ) 
=> DE là đường trung bình của tam giác MNP
=> DE // NP
CMTT : DG // MQ
Để hình thoi DEFG là hình vuông
<=> góc GDE = 90 độ
<=> GD vuông góc DE
Ta có :  DE // NP ( CMT )
      và   DG// MQ ( CMT )
Để GD vuông góc DE
<=> MQ vuông góc NP
Vậy tứ giác MNPQ có NP = MQ, NP vuông góc MQ thì tứ giác DEFG là hình vuông