M.n giúp mình vs mai mình nộp rùi ạ Toán 7
A chia hết cho 5 biết A= \(2^{2^n}-1\)(n thuộc N, n >= 0 )
\(2^{2^n}\)là lũy thừa tầng ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
10 chia hết cho n => n \(\in\)Ư(10) = {1;2;5;10}
2/ 12 chia hết cho n - 1 => n - 1 \(\in\)Ư(12) = {1;2;3;4;6;12}
=> n \(\in\){2;3;4;5;7;13}
3/ 20 chia hết cho 2n + 1 => 2n + 1 \(\in\)Ư(20) = {1;2;4;5;10;20}
=> 2n \(\in\){0;1;3;4;9;19}
=> n \(\in\){0;2} ( tại vì đề bài cho số tự nhiên nên chỉ có 2 số đây thỏa mãn)
4 / n \(\in\)B(4) = {0;4;8;12;16;20;24;...}
Mà n < 20 => n \(\in\){0;4;8;12;16}
5. n + 2 là ước của 30 => n + 2 \(\in\)Ư(30) = {1;2;3;5;6;10;15;30}
=> n \(\in\){0;1;3;4;8;13;28} (mình bỏ số âm nên mình không muốn ghi vào )
6. 2n + 3 là ước của 10 => 2n + 3 \(\in\)Ư(10) = {1;2;5;10}
=> 2n \(\in\){2;7} (tương tự mình cx bỏ số âm)
=> n = 1
7. n(n + 1) = 6 = 2.3 => n = 2
a, n-4 chia hết cho n-1
Vì n-1 \(_⋮\)n-1 nên 3\(_⋮\)n-1
\(\Rightarrow\)n-1 \(_{\in}\)Ư(3)
Ư(3)={1;-1;3;-3}n-1 | -1 | -3 | 1 | 3 |
n | 0 | -2 | 2 | 4 |
Vậy n\(_{\in}\){0;2;-2;4}
b, n-2 chia hết cho n+1
Ta có: n-2=n+1-3
\(\Rightarrow\)n-1+3\(_⋮\)n+1
\(\Rightarrow\)3\(_⋮\)n+1
\(\Rightarrow\)n+1\(_{\in}\)Ư(3)
Ư(3)={1;-1;3;-3}
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy n\(_{\in}\){0;-2;2;-4}
Ta có:
A = n2 + n + 1
A = n.(n + 1) + 1
a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2
=> n.(n + 1) + 1 không chia hết cho 2
=> A không chia hết cho 2 (đpcm)
b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6
=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5
=> A không chia hết cho 5 (đpcm)
Ủng hộ mk nha ^_-
\(A=n^2+n+1=n\left(n+1\right)+1\) \(\left(n\in N\right)\)
a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn
=>n(n+1) là số chẵn
=>n(n+1)+1 là số lẻ
=>A ko chia hết cho 2 (đpcm)
b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9
=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0
=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0
Hay n(n+1) có thể có tận cùng là: 0;2;6
=>n(n+1)+1 có thể có tận cùng là 1;3;7
=>A ko chia hết cho 5 (đpcm)