\(\sqrt{11+2\sqrt{18}}\)
\(\sqrt{7+2\sqrt{10}}\)
\(\sqrt{7+4\sqrt{3}}\)
\(\sqrt{12-2\sqrt{55}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)
4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
\(=-4\sqrt{3}\)
`a, (sqrt 28 - sqrt 12 - sqrt 7) sqrt 7 + 2 sqrt 21`.
`= sqrt(28.7) - sqrt(12.7) - sqrt(7.7) + 2 sqrt 21`.
`= sqrt(4. 7.7) - sqrt (12.7) - 7 + 2 sqrt 21`.
`= 14 - sqrt(4.3.7) - 7 + 2 sqrt 21`.
`= 7`.
`b, (sqrt99-sqrt18-sqrt11)sqrt11+3sqrt22`
`= sqrt(99.11)- sqrt(18.11)-sqrt(11.11) +3sqrt22`
`= sqrt(9.11.11)-sqrt(2.9.11)-11+3sqrt22`
`= 33 - 11 = 22`.
\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}=-2\sqrt{2}\)
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)
1: Ta có: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
2: Ta có: \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}-1+\sqrt{3}+1\)
\(=2\sqrt{3}\)
a: Ta có: \(\sqrt{75}-2\sqrt{27}+\sqrt{48}\)
\(=5\sqrt{3}-2\cdot3\sqrt{3}+4\sqrt{3}\)
\(=3\sqrt{3}\)
c: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7}+1-\sqrt{7}+2\)
=3
a) \(\sqrt{11+2\sqrt[]{18}}\)
\(=\sqrt{11+6\sqrt[]{2}}\)
\(=\sqrt{9+2.3\sqrt[]{2}+2}\)
\(=\sqrt{\left(3+\sqrt[]{2}\right)^2}=\left|3+\sqrt[]{2}\right|=3+\sqrt[]{2}\)
b) \(\sqrt[]{7+2\sqrt[]{10}}\)
\(=\sqrt[]{7+2\sqrt[]{5}.\sqrt[]{2}}\)
\(=\sqrt[]{5+2\sqrt[]{5}.\sqrt[]{2}+2}\)
\(=\sqrt[]{\left(\sqrt[]{5}+\sqrt[]{2}\right)^2}=\left|\sqrt[]{5}+\sqrt[]{2}\right|=\sqrt[]{5}+\sqrt[]{2}\)
c) \(\sqrt[]{7+4\sqrt[]{3}}\)
\(=\sqrt[]{4+2.2\sqrt[]{3}+3}\)
\(=\sqrt[]{\left(2+\sqrt[]{3}\right)^2}=\left|2+\sqrt[]{3}\right|=2+\sqrt[]{3}\)
d) \(\sqrt[]{16-2\sqrt[]{55}}\) \(\left(12\rightarrow16\right)\)
\(=\sqrt[]{11-2\sqrt[]{5}.\sqrt[]{11}+5}\)
\(=\sqrt[]{\left(\sqrt[]{11}-\sqrt[]{5}\right)^2}==\left|\sqrt[]{11}-\sqrt[]{5}\right|=\sqrt[]{11}-\sqrt[]{5}\left(\sqrt[]{11}>\sqrt[]{5}\right)\)