\(\sqrt{11+2\sqrt{18}}\)

\(\sqrt{7+2\sqrt{10}}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2023

a) \(\sqrt{11+2\sqrt[]{18}}\)

\(=\sqrt{11+6\sqrt[]{2}}\)

\(=\sqrt{9+2.3\sqrt[]{2}+2}\)

\(=\sqrt{\left(3+\sqrt[]{2}\right)^2}=\left|3+\sqrt[]{2}\right|=3+\sqrt[]{2}\)

b) \(\sqrt[]{7+2\sqrt[]{10}}\)

\(=\sqrt[]{7+2\sqrt[]{5}.\sqrt[]{2}}\)

\(=\sqrt[]{5+2\sqrt[]{5}.\sqrt[]{2}+2}\)

\(=\sqrt[]{\left(\sqrt[]{5}+\sqrt[]{2}\right)^2}=\left|\sqrt[]{5}+\sqrt[]{2}\right|=\sqrt[]{5}+\sqrt[]{2}\)

c) \(\sqrt[]{7+4\sqrt[]{3}}\)

\(=\sqrt[]{4+2.2\sqrt[]{3}+3}\)

\(=\sqrt[]{\left(2+\sqrt[]{3}\right)^2}=\left|2+\sqrt[]{3}\right|=2+\sqrt[]{3}\)

d) \(\sqrt[]{16-2\sqrt[]{55}}\) \(\left(12\rightarrow16\right)\)

\(=\sqrt[]{11-2\sqrt[]{5}.\sqrt[]{11}+5}\)

\(=\sqrt[]{\left(\sqrt[]{11}-\sqrt[]{5}\right)^2}==\left|\sqrt[]{11}-\sqrt[]{5}\right|=\sqrt[]{11}-\sqrt[]{5}\left(\sqrt[]{11}>\sqrt[]{5}\right)\)

3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)

4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

\(=-4\sqrt{3}\)

14 tháng 6 2018

Mình làm 5 bài trắc nha

Hỏi đáp Toán

14 tháng 6 2018

Hỏi đáp Toán

Rút gọn biểu thức: 1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\) 2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\) 3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\) 4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\) 5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\) 6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\) 7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\) 8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\) 9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\) 10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\) 11)...
Đọc tiếp

Rút gọn biểu thức:

1) \(\sqrt{12}+5\sqrt{3}-\sqrt{48}\)

2) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

3) \(2\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)

4) \(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)

5) \(\sqrt{12}+\sqrt{75}-\sqrt{27}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)

7) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

8) \(\left(\sqrt{2}+2\right)\sqrt{2}-2\sqrt{2}\)

9) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+}\)

10) \(\dfrac{1}{\sqrt{5}-2}+\dfrac{1}{\sqrt{5}+2}\)

11) \(\dfrac{2}{4-3\sqrt{2}}-\dfrac{2}{4+3\sqrt{2}}\)

12) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)

13) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

14) \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

15) \(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{120}\)

16) \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)

17) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+3\right)^2}\)

18) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

19) \(\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)

20) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)

4
3 tháng 1 2019

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


4 tháng 1 2019
https://i.imgur.com/pmexRQv.jpg
13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

25 tháng 8 2020

1) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)

\(=5\sqrt{10}-10-5\sqrt{10}\)

\(=-10\)

2) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)

\(=14-2\sqrt{21}-7+2\sqrt{21}\)

\(=7\)

3) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\) (hẳn đề là như thế này)

\(=33-3\sqrt{22}-11+3\sqrt{22}\)

\(=22\)

7 tháng 7 2017

\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)

các câu còn lại làm tương tự nhé bạn !

19 tháng 8 2017

Hà Nam răng từ\(\sqrt{4}.....\)sang đc 2+ căn 3 đó ???

1: \(=\sqrt{36}=6\)

2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)

3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)

4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)

5 tháng 6 2018

mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự

1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)

\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)

2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)

b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)