Tìm ƯCLN của 56;140 , 15;19, 24;84;180
Tìm Ưc của 90 và 150 và 26;39;48
Tìm số a lớn nhất biết
a,420 chia hết cho a và 700 chia hết cho a
b,105 chia hết cho a,175 chia hết cho a và 385 chia hết cho a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Phân tích ra thừa số nguyên tố: 56 = 23.7; 140 = 22.5.7
– Các thừa số nguyên tố chung là 2; 7.
⇒ ƯCLN (56, 140) = 22 .7 = 28 (số mũ của 2 nhỏ nhất là 2; số mũ của 7 đều bằng 1).
a: UC(56;140;84)={1;2;4;7;14;28}
BC(56;140;84)={420;840;...}
b: UCLN(56;140;84)=28
BCNN(56;140;84)=420
ƯCLN(84;105)=21
ƯCLN(16;24)=8
ƯCLN(40;144)=8
ƯCLN(52;42;48)=2
ƯCLN(135;225;405)=45
ƯCLN(128;190;320)=2
a: 84=2^2*3*7; 105=3*5*7
=>ƯCLN(84;105)=3*7=21
b: 16=2^4; 24=2^3*3
=>ƯCLN(16;24)=2^3=8
c: 40=2^3*5; 144=2^3*3^2
=>ƯCLN(40;144)=2^3=8
d: 56=2^3*7; 140=2^2*5*7
=>ƯCLN(56;140)=2^2*7=28
e: 52=2^2*13; 42=2*3*7; 48=2^4*3
=>ƯCLN(52;42;48)=2
f: 135=5*3^3; 225=5^2*3^2; 405=3^4*5
=>ƯCLN(135;225;405)=5*3^2=5*9=45
g: 128=2^7; 190=2*5*19; 320=2^6*5
=>ƯCLN(128;190;320)=2
a) 56 | 2 140 | 2
28 | 2 70 | 2
14 | 2 35 | 5
7 | 7 7 | 7
1 1
56 = 23 . 7 140 = 22 . 5 . 7
=> UCLN( 56;140 ) = 22 . 7 = 28
Tương tự b
a ) Ta có 56 = 23 . 7; 140 = 22 . 5 . 7. Do đó ƯCLN (56, 140) = 22 . 7 = 28;
b ) Vì 180 ⋮ 60 nên ƯCLN (60, 180) = 60
e) \(24=2^3.3\)
\(84=2^2.3.7\)
\(180=2^2.3^2.5\)
\(\RightarrowƯCLN\left(24;84;180\right)=2^2.3=12\)
b) \(24=2^2.3\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(24;36\right)=2^2.3=12\)
g) \(56=2^3.7\)
\(140=2^2.5.7\)
\(\RightarrowƯCLN\left(56;140\right)=2^2.7=28\)
h) \(12=2^2.3\)
\(14=2.7\)
\(8=2^3\)
\(20=2^2.5\)
\(\RightarrowƯCLN\left(12;14;8;20\right)=2\)
d) \(6=2.3\)
\(8=2^3\)
\(18=2.3^2\)
\(\RightarrowƯCLN\left(6;8;18\right)=2\)
k) \(7=7\)
\(9=3^2\)
\(12=2^2.3\)
\(21=3.7\)
\(\RightarrowƯCLN\left(7;9;12;21\right)=1\)