Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng định lý Pi-ta-go , ta có :
AB^2+AC^2=BC^2
12^2+AC^2=20^2
144+AC^2=400
AC^2=400-144
AC^2=256
\(\Rightarrow AC=\sqrt{256}=16\)
Ta có : BC>AC>AB
=> góc Â>B>C
b, Xét tg BAD và tg BHD vuông tại H
Có : AH=HD ( 2 tia đối )
B là góc chung
=> tg BAD = tg BHD
=> BA=BD ( hai cạnh tương ứng)
Mà : trong tg BAD có BA=BD
=> tg BAD cân
c và d : k pt lm
Tham Khảo
Gọi I và O là tâm các hình chữ nhật BDEH và CDFK
Ta có: góc B1 = góc D1 và góc C1 = góc D2 ( t/c hình chữ nhật )
mà góc B1 = góc C1 (gt) nên góc B1 = góc D1 = góc C1 = góc D2
Do đó BE//DK và DH//CA
=> AIDO là hình bình hành nên AO = ID; mà HI = ID ( t/c hcn )
Do đó AO = HI; ta lại có AO//HI
=> AOIH là hình bình hành nên AH // IO và AH = IO (1)
- CM tương tự, AIOK là hình bình hành nên AK // IO và AK = IO (2)
- Từ (1) và (2) suy ra H,A,K thẳng hàng và AH = AK
=> A là trung điểm của HK
Gọi K là hình chiếu của M lên AC. Xét tam giác MBH vuông tại H và MCK vuông tại K, ta có:
\(MB=MC\) (M là trung điểm BC); \(\widehat{B}=\widehat{C}\) (tam giác ABC cân tại A)
\(\Rightarrow\Delta MBH=\Delta MCK\left(ch-gn\right)\) \(\Rightarrow MH=MK\)
Ta thấy MK chính là khoảng cách từ AC đến M, đồng thời MK bằng MH là bán kính của đường tròn (M; MH) nên AC tiếp xúc với (M) (đpcm)