K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 12 2020
Ta có: HI/CH=1/2 HK / CH = EK / 2 EH = EK/DE
tam giác HIC đồng dạng tam giác EKD vì HI/CH=EK/DE và góc CHI = góc DEK ( cùng phụ góc HCK)
suy ra góc HCI = góc EDK
ta có: góc KDC + góc DCI = góc KDC + ( Góc HCI + góc HCD)
=(góc KDC + góc EDK) + góc HCD
= góc HDC + góc HCD
= 90 độ
suy ra DK vuông góc CI
4 tháng 3 2022
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Gọi K là hình chiếu của M lên AC. Xét tam giác MBH vuông tại H và MCK vuông tại K, ta có:
\(MB=MC\) (M là trung điểm BC); \(\widehat{B}=\widehat{C}\) (tam giác ABC cân tại A)
\(\Rightarrow\Delta MBH=\Delta MCK\left(ch-gn\right)\) \(\Rightarrow MH=MK\)
Ta thấy MK chính là khoảng cách từ AC đến M, đồng thời MK bằng MH là bán kính của đường tròn (M; MH) nên AC tiếp xúc với (M) (đpcm)