K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2024

Ta có BMIK nội tiếp

=> góc IMK = góc ABC

IMCH nội tiếp

=> góc IMH= góc ACB

Tam giác ABC cân tại A

=>góc ACB=góc ABC

31 tháng 1 2018

B B C C A A M M K K H H I I P P Q Q T T

a) Ta thấy các tam giác vuông KMB và IMB có chung cạnh huyền MB nên M, K, B, I cùng thuộc đường tròn đường kính MB hay BIMK là tứ giác nội tiếp.

Các tam giác vuông MIC và MHC có chung cạnh huyền MC nên M, I, C, H cùng thuộc đường tròn đường kính MC hay CIMH là tứ giác nội tiếp.

b) Gọi  T là giao điểm của MI với AB.

Do tứ giác BIMK nội tiếp nên \(\widehat{MKI}=\widehat{MBI};\widehat{KIM}=\widehat{KBM}\)  (Hai góc nội tiếp)

Tương tự ta cũng có \(\widehat{HMC}=\widehat{HIC};\widehat{MCH}=\widehat{MIH}\)

Vậy nên \(\widehat{KMT}=\widehat{MKI}+\widehat{KIM}=\widehat{MBI}+\widehat{KBM}=\widehat{ABC}\)

\(\widehat{HMT}=\widehat{MIH}+\widehat{MHI}=\widehat{MCH}+\widehat{MCI}=\widehat{ACB}\)

Mà tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

Suy ra \(\widehat{KMT}=\widehat{HMT}\) hat MT là phân giác góc \(\widehat{KMH}\)

Vậy tia đối của tia MI chính là phân giác góc \(\widehat{KMH}\)

12 tháng 4 2021

_undefined