Tìm x, y
a) x - y = xy = 4x : y
b) 2x - y = 2xy = 32x :y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
a, \(xy\) + 4\(x\) + \(y\) = 6
\(xy\) + y + 4\(x\) + 4 = 10
(\(xy\)+y) + (4\(x\) + 4) = 10
y(\(x\) + 1) + 44(\(x\) + 1) =10
(\(x\) + 1)(y + 4) = 10
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(x+1\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(x\) | -11 | -6 | -3 | -2 | 0 | 1 | 4 | 9 |
y + 4 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
y | -5 | -6 | -9 | -14 | 6 | 1 | -2 | -3 |
Từ bảng trên ta có các cặp \(x\) , y nguyên thỏa mãn đề bài là:
(\(x\); y) =(-11; -5); ( -6; -6); (-3; -9); (-2; -14); (0; 6); (1; 1); (4; -2); (9; - 3)
b, \(xy\) - 2\(x\) = y - 3
\(x\)y - y - 2\(x\) + 2 = -1
(\(x\)y - y) - (2\(x\) - 2) = -1
y(\(x\) - 1) - 2(\(x\) -1) = -1
(\(x\) - 1)(y -2) = -1
⇔ (1-\(x\))(y-2) =1
Ư(1) = {-1; 1}
Lập bảng ta có:
\(1-x\) | -1 | 1 |
\(x\) | 2 | 0 |
y- 2 | -1 | 1 |
y | 1 | 3 |
Theo bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\); y) = (2; 1); (0; 3)
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)