Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x\left(x-6\right)+10=x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
Dấu "=" xảy ra khi: \(x=3\)
\(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\)
Dấu "=" xảy ra khi: \(x=y=1\)
2) \(A=x^2-4x+1=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi: \(x=2\)
\(B=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{2}\)
\(C\) mk nghĩ đề sai
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(C=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)\)
\(C=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)\)
\(C=\left(x^2+5x+5\right)^2-1\)
\(C=\left(x^2+5x+\dfrac{25}{4}-\dfrac{5}{4}\right)^2-1\)
\(C=\left[\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]^2-1\ge\dfrac{9}{16}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{5}{2}\)
\(D=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Dấu "=" xảy ra khi: \(x=2\)
\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra khi: \(x=-4\)
a) \(x^2-8x+20\)
\(=x^2-2.x.4+16+4\)
\(=\left(x-4\right)^2+4\)
Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)
Hay:.............
b) \(x^2+11\)
Có: \(x^2\ge0\Rightarrow x^2+11>0\)
Hay:.............
c) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+2>0\)
d) \(x^2+5y^2+2x+6y+34\)
\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)
\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)
Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)
f) \(x^2-2x+y^2+4y+6\)
\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
a) x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
b) 4x2 - 2x + 1 = 4( x2 - 1/2x + 1/16 ) + 3/4 = 4( x - 1/4 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
c) x4 - 3x2 + 9 (*)
Đặt t = x2
(*) <=> t2 - 3t + 9 = ( t2 - 3t + 9/4 ) + 27/4 = ( t - 3/2 )2 + 27/4 = ( x2 - 3/2 )2 + 27/4 ≥ 27/4 > 0 ∀ x ( đpcm )
d) x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
e) x2 + y2 - 2x - 2y + 2xy + 2 = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + 1
= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + 1
= [ ( x + y )2 - 2( x + y ) + 12 ] + 1
= ( x + y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
a) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
b) \(4x^2-2x+1=4\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{3}{4}=4\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)
c) \(x^4-3x^2+9=\left(x^4-3x^2+\frac{9}{4}\right)+\frac{27}{4}=\left(x^2-\frac{3}{2}\right)^2+\frac{27}{4}>0\left(\forall x\right)\)
d) \(x^2+y^2-2x-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\left(\forall x,y\right)\)
e) \(x^2+y^2-2x-2y+2xy+2\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+1\)
\(=\left(x+y-1\right)^2+1>0\left(\forall x,y\right)\)
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
a) \(A=\left(x^2-2.2x+4\right)-3\)
\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)
Vậy minA = -3 khi x = 2
b) \(B=4x^2+4x+11\)
\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)
\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)
Vậy min B = 10 khi x = -1/2
c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)
\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)
Vậy MinC= -36 khi x =0 và x = -5
d) \(D=2x^2+y^2-2xy+2x-4y+9\)
\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)
\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)
\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Vậy min D = 4 khi x = 1 và y = 3
a) Ta có: \(A=x^2-5x+11\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{19}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{5}{2}=0\)
hay \(x=\frac{5}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-5x+11\) là \(\frac{19}{4}\) khi \(x=\frac{5}{2}\)
b) Ta có: \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+65\right)\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\)
Ta có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x-7=0
hay x=7
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(x-3\right)^2+\left(x-11\right)^2\) là 32 khi x=7
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)