Tìm số đo của góc nhọn \(a\)biết \(\sin a.\cos a=\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\)
\(\cot=\frac{1}{\tan}=\frac{1}{\frac{2\sqrt{5}}{5}}=\frac{\sqrt{5}}{2}\)
Đề sai nhé, phải là 16,3.
\(7\sin\alpha+13\cos\left(90-\alpha\right)=16,3\)
\(\Leftrightarrow7\sin\alpha+13\sin\alpha=16,3\)
\(\Leftrightarrow20\sin\alpha=16,3\)
\(\Leftrightarrow\sin\alpha=0,815\)
\(\Rightarrow\alpha\approx55\left(độ\right)\)
\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)
\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)
\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)
dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)
Đề lỗi font. Bạn cần chỉnh sửa lại bằng công thức toán để được hỗ trợ tốt hơn.
a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)
\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)
\(\cot\alpha=1\Rightarrow\alpha=45^0\)
b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)
\(\Rightarrow\alpha=60^0\)
Ta có: \(\left(\sin\alpha+\cos\alpha\right)^2=\sin^2\alpha+\cos^2\alpha+2\sin\alpha.\cos\alpha\)\(=1+2.\frac{1}{2}=1+1=2\)
=> \(\sin\alpha+\cos\alpha=\sqrt{2}\)=> \(\sin\alpha=\sqrt{2}-\cos\alpha\)
=> \(\sin\alpha.\cos\alpha=\left(\sqrt{2}-\cos\alpha\right).\cos\alpha=\sqrt{2}.\cos\alpha-\cos^2\alpha=\frac{1}{2}\)
=> \(\cos^2\alpha-\sqrt{2}\cos\alpha+\frac{1}{2}=0\)
Xong bạn giải phương trình bậc 2 => \(\cos\alpha=\frac{\sqrt{2}}{2}\)=> \(\alpha=45^o\)