\(\frac{\sqrt{3}}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Góc nhọn a = 30 độ hoặc 60 độ

Tk mk nha

2 tháng 3 2018

Có cách giải không ạ

16 tháng 5 2017

\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)

PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.

5 tháng 7 2017

Ta có: \(\left(\sin\alpha+\cos\alpha\right)^2=\sin^2\alpha+\cos^2\alpha+2\sin\alpha.\cos\alpha\)\(=1+2.\frac{1}{2}=1+1=2\)

=> \(\sin\alpha+\cos\alpha=\sqrt{2}\)=> \(\sin\alpha=\sqrt{2}-\cos\alpha\)

=> \(\sin\alpha.\cos\alpha=\left(\sqrt{2}-\cos\alpha\right).\cos\alpha=\sqrt{2}.\cos\alpha-\cos^2\alpha=\frac{1}{2}\)

=> \(\cos^2\alpha-\sqrt{2}\cos\alpha+\frac{1}{2}=0\)

Xong bạn giải phương trình bậc 2 => \(\cos\alpha=\frac{\sqrt{2}}{2}\)=> \(\alpha=45^o\)

NM
12 tháng 11 2020

\(A^2=\left(\sin\alpha+\cos\alpha\right)^2\le2\left(sin^2\alpha+cos^2\alpha\right)=2\)

\(\Leftrightarrow A\le\sqrt{2}\)dấu bằng xảy ra khi \(\sin\alpha=\cos\alpha\)

\(B=\frac{1}{\sin^2\alpha}+\frac{1}{\cos^2\alpha}\ge\frac{4}{sin^2\alpha+cos^2\alpha}=4\)

dấu bằng xảy ra khi \(sin^2\alpha=cos^2\alpha\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

24 tháng 7 2019

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'< 

Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)

\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)

Tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

24 tháng 7 2019

ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé 

Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)

Tương tự cộng lại ra đpcm