K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

= ( x3 + 2x2y + xy2 ) - 4y2

= x.( x2 + 2xy + y2 ) - 4y2

= x.( x + y )2 - 4y2

= x.[( x + y) - 4y]. [(x + y) + 4y] 

 

27 tháng 8 2023

a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)

\(=\left(2x+y\right).3y\)

b) \(\left(x+1\right)^3+\left(x-1\right)^3\)

\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)

\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)

c) \(9x^2-3x+2y-4y^2\)

\(=9x^2-4y^2-3x+2y\)

\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)

\(=\left(3x-2y\right)\left[3x+2y-1\right]\)

d) \(4x^2-4xy+2x-y+y^2\)

\(=4x^2-4xy+y^2+2x-y\)

\(=\left(2x-y\right)^2+2x-y\)

\(=\left(2x-y\right)\left(2x-y+1\right)\)

e) \(x^3+3x^2+3x+1-y^3\)

\(=\left(x+1\right)^3-y^3\)

\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)

g) \(x^3-2x^2y+xy^2-4x\)

\(=x\left(x^2-2xy+y^2\right)-4x\)

\(=x\left(x-y\right)^2-4x\)

\(=x\left[\left(x-y\right)^2-4\right]\)

\(=x\left(x-y+2\right)\left(x-y-2\right)\)

27 tháng 8 2023

a) (x + 2y)² - (x - y)²

= (x + 2y - x + y)(x + 2y + x - y)

= 3y(2x + y)

b) (x + 1)³ + (x - 1)³

= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]

= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)

= 2x(x² + 3)

c) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) x³ + 3x² + 3x + 1 - y³

= (x³ + 3x² + 3x + 1) - y³

= (x + 1)³ - y³

= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]

= (x - y + 1)(x² + 2x + 1 + xy + y + y²)

g) x³ - 2x²y + xy² - 4x

= x(x² - 2xy + y² - 4)

= x[(x² - 2xy + y²) - 4]

= x[(x - y)² - 2²]

= x(x - y - 2)(x - y + 2)

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

28 tháng 7 2023

1: =(2x+y-2y)(2x+y+2y)

=(2x-y)(2x+3y)

2: =(4-5x)(16+20x+25x^2)

3: =x(x^2-2xy+y^2-4)

=x[(x-y)^2-4]

=x(x-y-2)(x-y+2)

4: =(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

 

 

16 tháng 8 2023

\(x^3+2x^2y+xy^2-9x\)

\(=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left[\left(x^2+2xy+y^2\right)-9\right]\)

\(=x\left[\left(x+y\right)^2-9\right]\)

\(=x\left(x+y+3\right)\left(x+y-3\right)\)

18 tháng 2 2024

Bài 2 : Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự tại E và F. Chứng minh: 𝐴𝐸/𝐴𝐷 + 𝐶𝐹/𝐵𝐶 = 1 

20 tháng 8 2023

\(x^3+2x^2y+xy^2-25x\)

\(=x\left(x^2+2xy+y^2-25\right)\)

\(=x\left[\left(x+y\right)^2-5^2\right]\)

\(=x\left(x+y-5\right)\left(x+y+5\right)\)

20 tháng 8 2023

= ( x3 + 2x2y + xy2 ) - 25x

= x.(x2 + 2xy + y2 ) - 5x2 

= x.( x + y )2 - 5x2

= x. [(x + y) + 5x]. [( x + y) - 5x]

 

17 tháng 1 2018

19 tháng 12 2021

\(=x\left(x^2+2xy+y^2-9\right)\)

=x(x+y-3)(x+y+3)

19 tháng 12 2021

\(x^3+2x^2y+xy^2-9x=x\left(x^2+2xy+y^2-9\right)=x\left[\left(x+y\right)^2-3^2\right]=x\left(x+y-3\right)\left(x+y+3\right)\)

27 tháng 11 2018

x3 + 2x2y + xy2 – 9x

(Có x là nhân tử chung)

= x(x2 + 2xy + y2 – 9)

(Có x2 + 2xy + y2 là hằng đẳng thức)

= x[(x2 + 2xy + y2) – 9]

= x[(x + y)2 – 32]

(Xuất hiện hằng đẳng thức (3)]

= x(x + y – 3)(x + y + 3)

30 tháng 1 2017

Ta có : Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phép nhân các phân thức đại số | Lý thuyết và Bài tập Toán 8 có đáp án

26 tháng 9 2019

a) x3 + 2x2y + xy2 – 4x = x(x2 + 2xy + y2– 4) = x[(x+y)2-4]

= x(x + y + 2)(x + y – 2)