K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

\(5x\ge4x+3\).

\(\Leftrightarrow5x-4x\ge3\).

\(\Leftrightarrow x\ge3\).

Vậy phương trình có tập nghiệm: \(\left\{x|x\ge3\right\}\).

11 tháng 5 2021

\(5x\ge4x+3\Leftrightarrow x\ge3\)

Vậy tập nghiệm của BFT là S = { x | x >= 3 } 

7 tháng 5 2018

1) \(|3-5x|>=4\)

\(< =>\orbr{\begin{cases}3-5x>=4\\3-5x>=-4\end{cases}}\)

\(< =>\orbr{\begin{cases}-5x=1\\-5x=-7\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{-1}{5}\\x=\frac{7}{5}\end{cases}}\)

\(vay:x_1=\frac{-1}{5};x_2=\frac{7}{5}\)

CÂU 2 , 3 ,4 THÌ TƯƠNG TỰ ( CHIA THÀNH HAI TRƯỜNG HỢP RỒI GIẢI) 

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

BPT <=> -3x2+15x-12>0

<=> x2-5x+4<0

<=> (x-1)(x-4)<0

<=> \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\)(loại)

<=> 1<x<4

NV
24 tháng 7 2021

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(4x^3+4x^2-5x+9=4\sqrt[4]{\left(2x+1\right).2.2.2}\le2x+1+2+2+2\)

\(\Leftrightarrow4x^3+4x^2-7x+2\le0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-1\right)^2\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\le0\) (do \(x+2>0\) ; \(\forall x\ge-\dfrac{1}{2}\))

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\dfrac{1}{2}\)

16 tháng 3 2020

\(x^4+4x^3+5x^2-4x+4=0\)

\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)

\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)

Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)

Mà ko cùng một lúc tồn tại 2 giá trị của x

\(\Rightarrow\)Phương trình vô nghiệm

Vậy ...

a: Ta có: \(\sqrt{4x^2+4x+3}=8\)

\(\Leftrightarrow4x^2+4x+1+2-64=0\)

\(\Leftrightarrow4x^2+4x-61=0\)

\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)

 

14 tháng 8 2021

VP bạn bình phương sao vế trái bạn không bình phương ạ! 

Phương trình đầy đủ chắc là \(\left(4x-1\right)\left(x-3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

  Vậy \(x=\pm3\)

23 tháng 1 2021

(4x-1)(x-3)-(x-3)(5x+2)

=4x2-12x-x+3-(5x2+2x-15x-6)

=4x2- 13x + 3 - 5x2- 2x + 15x + 6

=9 - x2 

TL
5 tháng 2 2021

undefined