Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x-\dfrac{2}{3}=0\\ \Leftrightarrow4x=\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{\dfrac{2}{3}}{4}=\dfrac{2}{12}=\dfrac{1}{6}\\ \Rightarrow S=\left\{\dfrac{1}{6}\right\}\\ 3-\dfrac{3}{5}x=0\\ \Leftrightarrow\dfrac{3}{5}x=3\\ \Leftrightarrow x=\dfrac{3}{\dfrac{3}{5}}=5\\ \Rightarrow S=\left\{5\right\}\\ 2x+3=5\\ \Leftrightarrow2x=5-3=2\\ \Leftrightarrow x=\dfrac{2}{2}=1\\ \Rightarrow S=\left\{1\right\}\)
a, 4x = 2/3 <=> x = 1/6
b, 3/5x = 3 <=> x = 5
c, 2x = 2 <=> x = 1
Ta có: 5x + 3x2 = 0
<=> x(3x + 5) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-\frac{5}{3}\end{cases}}\) Vậy S = {0; -5/3)
5(x2 - 2x) = (3 + 5x)(x - 1)
<=> 5x2 - 10x = 5x2 - 2x - 3
<=> 5x2 - 10x - 5x2 + 2x = -3
<=> -8x = -3
<=> x = 3/8 Vậy S = {3/8}
(4x + 3)2 = 4(x - 1)2
<=> (4x + 3)2 - (2x - 2)2 = 0
<=> (4x + 3 - 2x + 2)(4x +3 + 2x - 2) = 0
<=> (2x + 5)(6x + 1) = 0
<=> \(\orbr{\begin{cases}2x+5=0\\6x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\) Vậy S = {-5/3; -1/6}
a) 5x + 3.x2 = 0
<=>x . ( 5 + 3x ) = 0
<=> \(\orbr{\begin{cases}x=0\\5+3.x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\z=-\frac{5}{3}\end{cases}}\)
Nghiệm cuối cùng là :{ 0;\(-\frac{5}{3}\)}
b) 5.( x2 - 2.x ) = ( 3 + 5.x ) . ( x- 1 )
<=>5.x2 - 10.x = 3.x -3 + 5.x2 - 5.x
<=> -10.x = 3.x - 3-5.x
<=> -10.x = -2.x - 3
<=> -8.x = -3
<=> x = \(\frac{3}{8}\)
Vậy x = \(\frac{3}{8}\)
c) ( 4x + 3 )2 = 4. ( x - 1 )2
<=> 16.x2 + 24.x + 9 = 4.( x2 -2.x + 1 )
<=> 16.x2+24.x + 9 = 4.x2 -8.x + 4
<=> 16.x2 +24.x + 9 -4.x2 + 8.x - 4= 0
<=> 12.x2 + 32.x + 5 = 0
<=> 12.x2 + 30.x + 2.x + 5 = 0
<=> 6.x . ( 2.x + 5 ) + 2.x + 5 =0
<=> ( 2.x + 5 ) . ( 6.x + 1 ) =0
<=> \(\orbr{\begin{cases}2.x+5=0\\6.x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=-\frac{1}{6}\end{cases}}\)
Nghiệm cuối cùng là : { \(-\frac{5}{2};-\frac{1}{6}\)}
Ta có : 2x4 - 5x3 + 4x2 -5x +2 =0
<=> ( 2x4 +4x2 +2) - ( 5x3 + 5x)=0
<=> 2( x4+2x2+1) - 5x( x2 +1) =0
<=> 2 ( x2+1)2 - 5x( x2+1) =0
<=> (x2 +1) ( 2( x2 +1) -5x ) =0
<=> 2( x2 +1) -5x =0 ( vì x2 >_ 0 => x2 +1 >0)
<=>2x2 +2 -5x =0
<=> 2x2 +2 -4x-x =0
<=> (2x2 -4x) +( 2-x) =0
<=> 2x(x-2) -( x-2) =0
<=> (x-2) (2x-1) = 0
<=> x-2 =0 <=> x= 2 hoặc 2x-1 =0 <=> x= 1/2
vậy x= 2 hoặc x= 1/2
- học tốt -
\(x^4+4x^3+5x^2-4x+4=0\)
\(\Leftrightarrow x^4+4x^3+4x^2+x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
Vì \(x^2\left(x+2\right)^2\ge0\forall x;\left(x-2^2\right)\ge0\forall x\)
\(\Rightarrow x^2\left(x+2\right)^2+\left(x-2\right)^2\ge0\)
Mà \(x^2\left(x+2\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x\left(x+2\right)=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0;x=-2\\x=2\end{cases}}\)
Mà ko cùng một lúc tồn tại 2 giá trị của x
\(\Rightarrow\)Phương trình vô nghiệm
Vậy ...
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
a, (3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy...
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}