Cho hàm số \(f(x) = \sqrt {4 + 3u(x)} \) với \(u(1) = 7,u'(1) = 10\). Khi đó \(f'(1)\) bằng
A. 1.
B. 6 .
C. 3 .
D. -3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(TXĐ=D=R\)
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
a, đk : \(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\)
b, Gỉa sử f(a) = f(-a)
\(\sqrt{2-a}+\sqrt{a+2}=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}\)*đúng*
Vậy ta có đpcm
c, Ta có : \(y^2=2-x+x+2+2\sqrt{4-x^2}=4+2\sqrt{4-x^2}\)
Do \(2\sqrt{4-x^2}>0\Rightarrow4+2\sqrt{4-x^2}>4\)với -2 =< x =< 2
Vậy y^2 > 4
1. f(-2) = 3.(-2)2-1 = 3.4-1 = 11
f(1/4) = 3.(1/4)2-1=-13/16
2. f(x) = 47
=> 3x2 - 1 = 47
=> 3x2 = 48
=> x2 = 16
=> x = 4 hoặc x = -4
3. f(x) = f(-x)
<=> 3x2 - 1 = 3.(-x)2 - 1
Mà x2 = (-x)2
=> 3x2 - 1 = 3.(-x)2 - 1
=> f(x) = f(-x) (đpcm)
\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)
a: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)
F(3)=3/2*3^2=27/2
\(F\left(\sqrt{5}\right)=\dfrac{3}{2}\cdot\left(\sqrt{5}\right)^2=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\)
\(F\left(-\dfrac{\sqrt{2}}{3}\right)=\dfrac{3}{2}\cdot\dfrac{2}{9}=\dfrac{3}{9}=\dfrac{1}{3}\)
b: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)
=>A thuộc (P)
\(F\left(-\sqrt{2}\right)=\dfrac{3}{2}\cdot\left(-\sqrt{2}\right)^2=\dfrac{3}{2}\cdot2=3\)
=>B thuộc (P)
\(F\left(-4\right)=\dfrac{3}{2}\cdot\left(-4\right)^2=\dfrac{3}{2}\cdot16=\dfrac{48}{2}=24\)
=>C ko thuộc (P)
F(1/căn 2)=3/2*1/2=3/4
=>D thuộc (P)
1) \(f\left(x\right)=2x-5\)
\(f'\left(x\right)=2\)
\(\Rightarrow f'\left(4\right)=2\)
2) \(y=x^2-3\sqrt[]{x}+\dfrac{1}{x}\)
\(\Rightarrow y'=2x-\dfrac{3}{2\sqrt[]{x}}-\dfrac{1}{x^2}\)
3) \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt[]{x}\)
\(\Rightarrow f'\left(x\right)=\dfrac{1.\left(x+3\right)-1.\left(x+9\right)}{\left(x-3\right)^2}+\dfrac{4}{2\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{x+3-x-9}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=\dfrac{12}{\left(x-3\right)^2}+\dfrac{2}{\sqrt[]{x}}\)
\(\Rightarrow f'\left(x\right)=2\left[\dfrac{6}{\left(x-3\right)^2}+\dfrac{1}{\sqrt[]{x}}\right]\)
\(\Rightarrow f'\left(1\right)=2\left[\dfrac{6}{\left(1-3\right)^2}+\dfrac{1}{\sqrt[]{1}}\right]=2\left(\dfrac{3}{2}+1\right)=2.\dfrac{5}{2}=5\)
f.
\(x+1>0\) và \(7-2x>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)
g.
\(x+1>0\) và \(x^2-4\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)
h: ĐKXĐ: |x+1|-|x-2|<>0
=>|x+1|<>|x-2|
=>x-2<>x+1 và x+1<>-x+2
=>2x<>1
=>x<>1/2
g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0
=>x>-2 và x>-1 và x<>2; x<>-2
=>x>-1; x<>2
f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x
=>3x<>6 và -1<=x<=7/2
=>x<>2 và -1<=x<=7/2
\(f\left(x\right)=\sqrt{4+3u\left(x\right)}\)
\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(4+3u\left(x\right)\right)'}{2\sqrt{4+3u\left(x\right)}}=\dfrac{3u'\left(x\right)}{2\cdot\sqrt{4+3u\left(x\right)}}\)
\(f'\left(1\right)=\dfrac{3\cdot u'\left(1\right)}{2\cdot\sqrt{4+3u\left(1\right)}}=\dfrac{3\cdot10}{2\cdot\sqrt{4+3\cdot7}}=3\)
=>Chọn C