thay ab trong số 2003ab bởi chữ số thích hợp để số này đồng thời chia hết cho 2,5 và 9 đều dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì số đó chia hêt cho 2,5 nên số đó có chữ số tận cùng là 0 hay b=0
mà số đó chia hết cho 9 nên 2+3+a phải chia hết cho 9 (0<a<10)
=> 2+3+a=9=> a=4
2003ab = 200340 thì chi hết cho 2 , 5 và 9
Để số 2003ab chia hết cho 2 và 5 thì chữ số tận cùng là 0 hay chữ số b=0
Để số 2003ab chia hết cho 9 thì tổng các chữ số của số đấy phải chia hết cho 9. Ta có: 2003ab= 2+0+0+3+a+0=5+a
Để só 2003ab chia hết cho 9 thì a=4
Vậy số a=4; b=0 để có số 200340 chia hết cho cả 2, 5 và 9
HT
Giải :
Để 2003ab đồng thời chia hết cho cả 2 và 5 thì b = 0 , thay b = 0 ta được :
2003ab = 2003a0 , để 2003a0 ⋮ 9
=> 2 + 0 + 0 + 3 + a + 0 ⋮ 9
=> 5 + a ⋮ 9 mà a là chữ số
=> a = 4
Vậy để 2003ab chia hết cho cả 2 ; 5 và 9 thì a = 4 và b = 0
1. Để \(\overline{1996ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{1996a0}⋮9\)thì 1+9+9+6+a+0\(⋮\)9
25\(⋮\)9
\(\Rightarrow\)a=2
Vậy a=2 và b=0.
2. Đề \(\overline{m340n}⋮5\)thì n\(\in\){0;5}
Với n=5 thì m+3+4+0+5=m+12\(⋮\)9
\(\Rightarrow\)m=6
Với n=0 thì m+3+4+0+0=m+7\(⋮\)9
\(\Rightarrow\)m=2
Vậy m=6 và n=5 hoặc m=2 và n=0.
Để \(\overline{2007ab}\)chia hết cho cả 2 và 5 thì b=0
Thay b=0, ta được \(\overline{2007a0}⋮9\)thì 2+0+0+7+a+0=a+9\(⋮\)9
\(\Rightarrow\)a=0
Vậy a=0 và b=0
Lưu ý : dấu \(⋮\)là chia hết cho
Để chia cho 2 dư 1: -> y gồm các số: 1,3,5,7,9 (1)
Để chia cho 5 dư 1: -> y gồm các số: 1 và 6 (2)
Từ (1) và (2) => y=1
x7531 chia cho 9 dư 1 -> x+7+5+3+1 chia 9 dư 1 <=> x+16 chia 9 dư 1
=> x = 3
Vậy số cần tìm là 37531
Bài 4:
M chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(9\right)\)
M chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(10\right)\)
Từ (9) và (10) suy ra y=3
=>\(M=\overline{6x523}\)
M chia hết cho 9
=>\(6+x+5+2+3⋮9\)
=>\(x+16⋮9\)
mà 0<=x<=9
nên x=2
Vậy: Số cần tìm là M=62523
Bài 1:
a: \(\overline{735x}⋮2\)
=>\(x⋮2\)
=>\(x\in\left\{0;2;4;6;8\right\}\left(1\right)\)
\(\overline{735x}\) chia 5 dư 3
=>x chia 5 dư 3
=>\(x\in\left\{3;8\right\}\left(2\right)\)
Từ (1) và (2) suy ra x=8
b: \(\overline{735x}\) chia 2 dư 1
=>x lẻ
mà 0<=x<=9
nên \(x\in\left\{1;3;5;7;9\right\}\left(3\right)\)
\(\overline{735x}\) chia 5 dư 4
=>x chia 5 dư 4
mà 0<=x<=9
nên \(x\in\left\{4;9\right\}\left(4\right)\)
Từ (3) và (4) suy ra x=9
Bài 2:
Đặt \(A=\overline{4x73y}\)
A chia cho 2 du1
=>y lẻ
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\left(5\right)\)
A chia 5 dư 1
=>y chia 5 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;6\right\}\left(6\right)\)
Từ (5) và (6) suy ra y=1
=>\(A=\overline{4x731}\)
A chia hết cho 9
=>4+x+7+3+1 chia hết cho 9
=>x+14 chia hết cho 9
mà 0<=x<=9
nên x=4
Vậy: Số cần tìm là 44731
Bài 3:
Đặt \(B=\overline{4x73y}\)
B chia 2 dư 1
=>y chia 2 dư 1
mà 0<=y<=9
nên \(y\in\left\{1;3;5;7;9\right\}\)(7)
B chia 5 dư 3
=>y chia 5 dư 3
mà 0<=y<=9
nên \(y\in\left\{3;8\right\}\left(8\right)\)
Từ (7) và (8) suy ra y=3
=>\(B=\overline{4x733}\)
B chia 9 dư 4
=>4+x+7+3+3 chia 9 dư 4
=>x+13 chia hết cho 9
mà 0<=x<=9
nên x=5
Vậy: Số cần tìm là 45733
\(\overline{2003ab}\) : 2;5 dư 1 ⇔ b = 1
\(\overline{2003ab}\) : 9 dư 1 ⇔ 2+0+0+3+a+b - 1⋮ 9
4 + a + 1 ⋮ 9
5 + a ⋮ 9 ⇒ a =4;
Thay a = 4; b = 1 vào biểu thức \(\overline{2003ab}\) ta có
\(\overline{2003ab}\) = 200341
là số 200341 nha bn