Tìm số nguyên:
a, xy + y + x = 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy-y+x=9\)
\(\Rightarrow x\left(x-y\right)+x=9\)
\(\Rightarrow x\left(x-y+1\right)=9\)
\(\Rightarrow x;\left(x-y+1\right)\in\left\{-1;1;-3;3;-9;9\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-1;9\right);\left(1;-7\right);\left(-3;-1\right);\left(3;1\right);\left(-9;-7\right);\left(9;9\right)\right\}\)
\(xy\) - \(y\) + \(x\) = 9
(\(xy\) + \(x\)) - \(y\) = 9
\(x\)(\(y\) + 1) - \(y\) = 9
\(x\)(\(y+1\)) = 9 + \(y\)
\(x\) = \(\dfrac{9+y}{y+1}\) ( y \(\ne\) -1)
\(x\in\) z \(\Leftrightarrow\) 9 + \(y\) ⋮ \(y\) + 1
\(\Leftrightarrow\) \(y\) + 1 + 8 \(⋮\) \(y\) + 1
8 \(⋮\) \(y\) + 1
\(y\) + 1 \(\in\) { -8; -4; -2; -1; 1; 2; 4; 8}
\(y\) \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}
Lập bảng ta có:
y | -9 | -5 | -3 | -2 | 0 | 1 | 3 | 7 |
\(x=\dfrac{y+9}{y+1}\) | 0 | -1 | -3 | -7 | 9 | 5 | 3 | 2 |
(\(x;y\)) | (0;-9) | (-1; -5) | (-3; -3) | (-7; -2) | (9;0) | (5;1) | (3;3) | (2;7) |
Vậy các cặp (\(x\); y) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(0; -9); (-1; -5); (-3; -3); (-7; -2); (9; 0); (5; 1) (3; 3); (2; 7)
a) \(2x^2-3xy-2y^2=2\)
\(\Rightarrow2x^2+xy-4xy-2y^2=2\)
\(\Rightarrow x\left(2x+y\right)-2y\left(2x+y\right)=2\)
\(\Rightarrow\left(2x+y\right)\left(x-2y\right)=2\)
\(\Rightarrow\left(2x+y\right);\left(x-2y\right)\in\left\{-1;1;-2;2\right\}\)
Ta giải các hệ phương trình sau với x;y nguyên
1) \(\left\{{}\begin{matrix}2x+y=-1\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-2\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=1\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=2\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+y=-2\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-4\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x+y=2\\x-2y=1\end{matrix}\right.\) \(\left\{{}\begin{matrix}4x+2y=4\\x-2y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;1\right)\right\}\)
b) \(xy-y+x=9\)
\(\Rightarrow y\left(x-1\right)+x-1+1=9\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=8\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-9\right);\left(2;7\right);\left(-1;-5\right);\left(3;3\right);\left(-3;-3\right);\left(5;1\right);\left(-7;-2\right);\left(9;0\right)\right\}\)
a: \(\Leftrightarrow x+1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2;6;-8\right\}\)
x + xy + y = 9
<=> x + xy + y + 1 = 9 + 1
<=> x(y + 1) + (y + 1) = 10
<=> (x + 1)(y + 1) = 10
Ta có bảng sau
x + 1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y + 1 | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
y | -11 | 9 | -6 | 4 | -3 | 1 | -2 | 0 |
Vậy các cặp (x;y) thõa mãn là (0;-11) ; (-2;9) ; (1;-6) ; (-3;4) ; (4;-3) ; (-6;1) ; (9;-2) ; (-11;0)
May ngu
Tao lv 1211 lc 100k ma moi v111
TaoTM
may la hinata
T
XIn loi ban minh len con dong kinh
a)Ta có :\(xy-2x-3y=9\)
\(x.\left(y-2\right)\)-\(3.\left(y-2\right)\)\(-6=9\)
\(\left(x-3\right)\)\(.\left(y-2\right)\)\(=15\)
đến đây cậu tự làm tiếp nhé
x-3 ,y-2 Ư(15)=1;3;5;15
x-3 | 1 | 15 | -1 | -15 | 3 | 5 | -3 | -5 |
y-2 | 15 | 1 | -15 | -1 | 5 | 3 | -5 | -3 |
x | 4 | 18 | 2 | -12 | 6 | 8 | 0 | -2 |
y | 17 | 3 | -13 | 1 | 7 | 5 | -3 | -1 |
\(\left(x;y\right)\) \(\left(4;17\right),\left(18;3\right),\left(2;-13\right),\left(-12;1\right),\left(6;7\right),\left(8;5\right),\)\(\left(0;-3\right),\left(-2;-1\right)\)
a, \(xy\) + y + \(x\) = 9
\(xy\) + \(x\) = 9 - y
\(x\).(y + 1) = 9 - y ( đkxđ y \(\ne\) -1)
\(x\) = \(\dfrac{9-y}{y+1}\)
\(x\) \(\in\) Z \(\Leftrightarrow\) 9 - y \(⋮\) y + 1 ⇔ -y -1 + 10 ⋮ y + 1; ⇔10 ⋮ y + 1
y + 1 \(\in\)Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
y \(\in\) { -11; -6; -3; -2; 0; 1; 4; 9}
lập bảng ta có:
Vậy các cặp\(\left(x;y\right)\)thỏa mãn đề bài là:
(\(x;y\)) = (-2; -11); (-6; -3);(-3; -6); (-11; -2); (9;0); (1; 4); (1;4); (9;0)
x + xy + y = 9
<=> x + xy + y + 1 = 9 + 1
<=> x(y + 1) + (y + 1) = 10
<=> (x + 1)(y + 1) = 10
x + 1
1
-1
2
-2
5
-5
10
-10
y + 1
-10
10
-5
5
-2
2
-1
1
x
0
-2
1
-3
4
-6
9
-11
y
-11
9
-6
4
-3
1
-2
0
Vậy các cặp (x;y) thõa mãn là (0;-11) ; (-2;9) ; (1;-6) ; (-3;4) ; (4;-3) ; (-6;1) ; (9;-2) ; (-11;0)