Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi F,J,H lần lượt là trung điểm của SD, CD, BC. Giao tuyến của (FJH) và (SAC) cắt HF tại O. Tỉ số OF /OH là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)
a: \(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
\(D\in FS\subset\left(SFE\right)\)
\(B\in SE\subset\left(SFE\right)\)
Do đó: \(BD\subset\left(SFE\right)\)
Ta có: \(O\in BD\subset\left(SEF\right)\)
\(O\in AC\subset\left(ACD\right)\)
Do đó: \(O\in\left(SEF\right)\cap\left(ACD\right)\)
mà \(D\in\left(SEF\right)\cap\left(ACD\right)\)
nên \(\left(SEF\right)\cap\left(ACD\right)=DO\)
b: Xét ΔSDB có
E,F lần lượt là trung điểm của SB,SD
=>EF là đường trung bình của ΔSDB
=>EF//DB
Xét (ABCD) và (AEF) có
BD//EF
\(A\in\left(ABCD\right)\cap\left(AEF\right)\)
Do đó: (ABCD) giao (AEF)=xy, xy đi qua A và xy//BD//EF
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
Đáp án B
Gọi O là tâm hình bình hành ABCD suy ra O ∈ M N và O ∈ A C
Vậy S M N ∩ S A C = S O