Giải phương trình:
3x2 -2y2=1
đây là phương trình Pell nhé, mong mọi người giải hộ mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t\in\mathbb{N}$)
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng phương trình tích đơn giản rồi. Bạn chỉ cần xét TH. Lưu ý rằng $t+7y+2>0$ và $t-7y-2, t+7y+2$ có cùng tính chẵn lẻ.
Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)
Mà theo Viét ta có \(x_1+x_2=-3\)
\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)
Tick cho mình trước khi đọc nha thể nào cũng đúng
Ta có \(x^2+6x^2+6+\left(\frac{x+3}{x+4}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
\(\Leftrightarrow\left(x+3\right)^2-2\left(x+3\right)\frac{\left(x+3\right)}{\left(x+4\right)}+\left(\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(x+3-\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)\left(x+4\right)-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+7x+12-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+6x+9}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)^2}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
Đặt \(\frac{\left(x+3\right)^2}{x+4}=a\) pt <=> \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
nên a=-3 hoặc a=1
Với a=-3 thì \(\frac{\left(x+3\right)^2}{x+4}=-3\Leftrightarrow x^2+6x+9=-3\left(x+4\right)\Leftrightarrow x^2+9x+21=0\)
nên pt này vô nghiệm
Với a=1 thì \(\frac{\left(x+3\right)^2}{x+4}=1\Leftrightarrow x^2+6x+9=\left(x+4\right)\Leftrightarrow x^2+5x+5=0\)
Giải ra được 2 nghiệm
Vậy....
TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24
phương trình tích là phương trình có dạng A*B=0
=>A=0 hoặc B=0