Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tick cho mình trước khi đọc nha thể nào cũng đúng
Ta có \(x^2+6x^2+6+\left(\frac{x+3}{x+4}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
\(\Leftrightarrow\left(x+3\right)^2-2\left(x+3\right)\frac{\left(x+3\right)}{\left(x+4\right)}+\left(\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(x+3-\frac{x+3}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)\left(x+4\right)-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+7x+12-\left(x+3\right)}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{x^2+6x+9}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
\(\Leftrightarrow\left(\frac{\left(x+3\right)^2}{x+4}\right)^2+2\frac{\left(x+3\right)^2}{\left(x+4\right)}-3=0\)
Đặt \(\frac{\left(x+3\right)^2}{x+4}=a\) pt <=> \(a^2+2a-3=0\Leftrightarrow\left(a+3\right)\left(a-1\right)=0\)
nên a=-3 hoặc a=1
Với a=-3 thì \(\frac{\left(x+3\right)^2}{x+4}=-3\Leftrightarrow x^2+6x+9=-3\left(x+4\right)\Leftrightarrow x^2+9x+21=0\)
nên pt này vô nghiệm
Với a=1 thì \(\frac{\left(x+3\right)^2}{x+4}=1\Leftrightarrow x^2+6x+9=\left(x+4\right)\Leftrightarrow x^2+5x+5=0\)
Giải ra được 2 nghiệm
Vậy....
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)
Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)
Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)
\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)
Đến đây bạn có thể giải ra tìm x đc
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
(Bình thường mà)
Tính \(\Delta_x=\left(2012+y\right)^2-4\left(2013+y\right)=\left(y+2010\right)^2-8\)
Để pt có nghiệm nguyên thì trước hết \(\Delta_x\) chính phương.
Mà bản thân số \(\left(y+2010\right)^2\) đã chính phương nên ta chỉ cần tìm 2 số chính phương lệch nhau 8 đơn vị.
Đó là số \(1\) và \(9\).
\(\left(y+2010\right)^2=9\) vì đây là số chính phương lớn hơn. Đến đây bạn tìm được \(y\) và sẽ suy ra \(x\).
Mình chỉ có thắc mắc là tại sao \(\Delta_x\) phải là chính phương thì nghiệm nguyên thôi?
Thay \(\sqrt{2}a^2=1-a\ge\)0 suy ra a <=1 tính được mẫu = \(-\sqrt{2}\left(2a-3\right)\)
biết nghiệm là biết cách làm rồi,hỏi chi