Cho a=111...1 (2n chữ số 1), b=222...2 (n chữ số 2) với mọi n thuộc N. Chứng tỏ rằng: a-b là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a=111...111-222...222
=1111...111-2*111...111(số bị trừ có 2n chữ số 1,số trừ có n chữ số 1)
=111...111*100..01-2*1111...111(số bị trừ có n chữ số 1 và số trừ cũng thế)
=111...111(100...01-2)
=111...111*999...99 ( n chữ số 1,n chữ số 9)
=(111...11*3)*333...33
=333...333*333...333(cả 2 thừa số đều có n chữ số 3)
- Mình chỉ biết làm câu a mà thôi.Thông cảm giúp mình nhé)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
Đặt 11......1 (n chữ số 1 ) =a ( a thuộc N )
=> 2222.....2(n chữ số 2) =2a
100....0(n chữ số 0) = 9a+1
=> 1111....1(2n chữ số 1) = a.(9a+1)+a
Khi đó : A = a.(9a+1)+a-2a = 9a^2+a+a-2a=9a^2 = (3a)^2 là số chính phương)
=> ĐPCM
Đặt 111...1 ( n chữ số) = x, ta có:
b = 222...2 ( n chữ số) = 2x.
a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)
Ta có:
\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)
\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)
Vật a-b là một số chính phương