K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

\(C=-x^2-3x+4\)

\(\Rightarrow C=-\left(x^2+3x\right)+4\)

\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}\right)+4\)

\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}\right)+4+\dfrac{9}{4}\)

\(\Rightarrow C=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\left(-\left(x+\dfrac{3}{2}\right)^2\le0,\forall x\right)\)

\(\Rightarrow Max\left(C\right)=\dfrac{25}{4}\left(tạix=-\dfrac{3}{2}\right)\)

11 tháng 8 2023

MAXC = 25/4 khi x =-3/2

17 tháng 7 2021

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

a: \(A=\left|3x-9\right|+1.5\ge1.5\forall x\)

Dấu '=' xảy ra khi x=3

b: \(B=\left|x-7\right|-14\ge-14\forall x\)

Dấu '=' xảy ra khi x=7

26 tháng 9 2021

Bn làm chi tiết hộ mik đc ko mik ko hiểu lắm!

18 tháng 9 2017

câu 1 

ta có .....

lười viết Min - cốp xki nha

18 tháng 9 2017

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

\(A=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)

\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)

Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

15 tháng 7 2016

\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

MIN B = 7/8 <=> x=3/4