K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

6 tháng 8 2018

b) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{20}}\)

\(\Rightarrow A=1-\frac{1}{2^{20}}< 1\left(đpcm\right)\)

c) ta có: \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{10}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{7}{10}\) ( có 7 số 1/10)

\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{9}{19}\)  ( có 9 số 1/19)

\(\Rightarrow\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{7}{10}+\frac{9}{10}=1\frac{33}{190}>1\)

=> đ p c m

6 tháng 8 2018

d) \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}< 1\)

=> đ p c m

e) ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{7^2}< \frac{1}{6.7};\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{7^2}+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}+\frac{1}{7.8}\)

                                                                                 \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

                                                                                 \(=1-\frac{1}{8}< 1\)

=> đ p c m

câu a mk ko bk, xl bn nhìu! :(

4 tháng 4 2017

Làm luôn nhé

\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}>\frac{1}{6}+\frac{5}{6}=1\)

\(A=\frac{3}{8}+\frac{1}{5}+\frac{5}{6}< \frac{3}{8}+\frac{1}{4}+\frac{5}{4}=\frac{3}{8}+\frac{2}{8}+\frac{10}{8}=\frac{15}{8}< \frac{16}{8}=2\)

Vậy 1<A<2

\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}>\frac{5}{14}.4=\frac{10}{7}>1\)

\(B=\frac{5}{11}+\frac{5}{12}+\frac{5}{13}+\frac{5}{14}< \frac{5}{10}.4=2\)

Vậy 1<B<2

4 tháng 3 2018

a) 4/8

b) 2/11;2/12;2/13;2/14;2/15;2/16;2/17

12 tháng 10 2015

tick mk nha Ngô Mậu Hoàng Đức

12 tháng 10 2015

Nhiều thế ưu tiên làm câu 2 trước 

a) A = 1 + 3 + 32 + ... + 3100

3A = 3 + 32 + ... + 3101

3A - A = 3101 - 1 

2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)

b) B = 1 + 4 + 42 + ... + 4100

4B = 4 + 42 + ... + 4101

4B - B = 4101 - 1 

3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)

c) C =  1 + 5 + 52 + ... + 5100

5C = 5 + 52 + ... + 5101

5C - C = 5101 - 1

4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)

d) chả hiểu gì hết 

10 tháng 10 2023

a) \(S=1+2+2^2+..+2^{2022}\)

\(2S=2+2^2+2^3+...+2^{2023}\)

\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)

\(S=2^{2023}-1\)

b) \(S=3+3^2+3^3+...+3^{2022}\)

\(3S=3^2+3^3+...+3^{2023}\)

\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)

\(2S=3^{2023}-3\)

\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)

c) \(S=4+4^2+4^3+...+4^{2022}\)

\(4S=4^2+4^3+...+4^{2023}\)

\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)

\(3S=4^{2023}-4\)

\(S=\dfrac{4^{2023}-4}{3}\)

d) \(S=5+5^2+...+5^{2022}\)

\(5S=5^2+5^3+...+5^{2023}\)

\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)

\(4S=5^{2023}-5\)

\(S=\dfrac{5^{2023}-5}{4}\)

10 tháng 10 2023

thanks