a) Cho số tự nhiên a chia cho7 dư 3
Cmr a^2 chia cho 7 dư 2
b) Nếu a chia cho 11 dư 4 thi a^2 chia cho 11 dư bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5
\(a=17k+11\Rightarrow a+74=17k+85⋮17\)
\(a=23t+18\Rightarrow a+74=23t+92⋮23\)
\(a=11m+3\Rightarrow a+74=11m+77⋮11\)
Từ đó \(a+74\in BC\left(17;23;11\right)\)
\(BCNN\left(17;23;11\right)=17.23.11=4301\)
\(a+74\in B\left(4301\right)\)
\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)
\(\Rightarrow a+74-4301=4301q-4301\)
\(\Rightarrow a-4227=4301\left(q-1\right)\Rightarrow a=4301\left(q-1\right)+4227\)
Vậy a chia 4301 dư 4227
Thôi, kệ đi, cả hai đều làm sai hết. Đây là cách giải của tôi:
Vì a chia 7 dư 6; 11 dư 8 và 15 dư 9 nên giả sử:
\(a=7m+6=11n+8=15p+9\)
Ta có:
\(a+36=7m+42=11n+44=15p+45\)
=> a + 36 chia hết cho cả 7, 11 và 15 hay a + 36 chia hết cho 1155
=> a : 1155 dư 1155 - 36 = 1119
A chia cho 7 dư 6 suy ra a chia hết cho13
A chia cho 11 dư 8 suy ra a chia hết cho 19
A chia cho 15 dư 9 suy ra a chia hết cho 24.
Suy ra a thuộc BC(13,19,24) và a nhỏ nhất nén a =BCNN(13,19,24)
13=13.
19=19.
24=2^3.3
A= BCNN(13,19,24)=2^3.3.13.19=5928.
Khi a chia cho 1155 thì có số dư là 5928:1155=5 dư 153.
a) Tìm được dư là 4227
b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)
Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505
Vậy A có tận cùng là 5.
b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5
a)
a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)
Ta có:
\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'
\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2
Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2
b)
a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)
Ta có:
\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'
\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5
Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5