K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5

27 tháng 6 2017

a)

a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)

Ta có:

\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'

\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2

Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2

b)

a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)

Ta có:

\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'

\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5

Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5

11 tháng 7 2016

câu 1 sai đề bạn ạ

câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11

11 tháng 7 2016

1.Đề sai

2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N 

Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)

Do đó \(a^2\) chia 11 dư 5

6 tháng 7 2018

dư 32 nhé bn

mk k chắc nữa nếu đúng thì k nhé!

6 tháng 7 2018

giải cụ thể hộ mình với

8 tháng 12 2017

sợ thế :)))))))))))) cc 

2 tháng 12 2018

\(a=17k+11\Rightarrow a+74=17k+85⋮17\)

\(a=23t+18\Rightarrow a+74=23t+92⋮23\)

\(a=11m+3\Rightarrow a+74=11m+77⋮11\)

Từ đó \(a+74\in BC\left(17;23;11\right)\)

\(BCNN\left(17;23;11\right)=17.23.11=4301\)

\(a+74\in B\left(4301\right)\)

\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301\left(q-1\right)\Rightarrow a=4301\left(q-1\right)+4227\)

Vậy a chia 4301 dư 4227

8 tháng 12 2018

hello

12 tháng 12 2016

Thôi, kệ đi, cả hai đều làm sai hết. Đây là cách giải của tôi:

Vì a chia 7 dư 6; 11 dư 8 và 15 dư 9 nên giả sử:

\(a=7m+6=11n+8=15p+9\)

Ta có:

\(a+36=7m+42=11n+44=15p+45\)

=> a + 36 chia hết cho cả 7, 11 và 15 hay a + 36 chia hết cho 1155

=> a : 1155 dư 1155 - 36 = 1119

10 tháng 12 2016

A  chia cho 7 dư 6 suy ra a chia hết cho13

A chia cho 11 dư 8 suy ra a chia hết cho 19

A chia cho 15 dư 9 suy ra a chia hết cho 24.

Suy ra a thuộc BC(13,19,24) và a nhỏ nhất nén a =BCNN(13,19,24)

13=13.

19=19.

24=2^3.3

A= BCNN(13,19,24)=2^3.3.13.19=5928.

Khi a chia cho 1155 thì có số dư là 5928:1155=5 dư 153.

3 tháng 11 2019

mình ko hiểu phần cuối

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.