K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

câu 1 sai đề bạn ạ

câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11

11 tháng 7 2016

1.Đề sai

2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N 

Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)

Do đó \(a^2\) chia 11 dư 5

27 tháng 6 2017

b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5

27 tháng 6 2017

a)

a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)

Ta có:

\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'

\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2

Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2

b)

a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)

Ta có:

\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'

\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5

Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5

20 tháng 7 2017

\(n^2:7\)dư 2

\(n^3:7\)dư 1

12 tháng 7 2019

n chia 7 dư 4 thì n có dạng \(7k+4\)

Ta có:

\(n^2=\left(7k+4\right)^2=49k^2+56k+14+2\) chia 7 dư 2

\(n^3=\left(7k+3\right)^3=343k^3+147k^2+189k+21+6\) chia 7 dư 6

12 tháng 7 2019

zZz Cool Kid zZz ơi bạn lộn phần \(n^3\)kìa

18 tháng 7 2023

a : 7 dư 3 cm a2 : 7 dư 2

Ta có:     a = 7k + 3

          ⇔ a2 = (7k + 3)2

          ⇔ a2 = 49k2 + 42k + 9

          ⇔ a2 = 7.(7k2 + 6k + 1) + 2

                7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7

          ⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)

          

    

           

 

18 tháng 7 2023

Cách 2 sử dụng đồng dư thức:

\(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7)  32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)

12 tháng 7 2016

Ta có số a chia 7 dư 3 , tức là \(a=7k+3\left(k\in N\right)\)

\(\Rightarrow a^2=\left(7k+3\right)^2=\left(7k\right)^2+3^2+2.7.3k=7\left(7k^2+6k+1\right)+2=7Q+2\) 

Vậy a2 chia 7 dư 2

12 tháng 7 2016

ta có a:7 dư 3 nên a sẽ có dạng tổng quát là a=7k+3 \(\left(k\in N\right)\)

\(\Rightarrow\)a2=(7k+3)2=(7k)2+2.7k.3+7+2=7(7k2+6k+1)+2 ( có dạng B.Q+R)

vậy nên a2:7 dư 2

17 tháng 6 2019

a chia 7 dư 1 => a=7x+1 ( x thuộc N)

b chia 7 dư 2 => b=7k+2 (k thuộc N)

=>  ab=(7x+1)(7k+2)=49xk+14x+7k+2

vì 49xk; 14x; 7k đều chia hết cho 7

=> tích ab chia 7 dư 2

17 tháng 6 2019

Gọi \(a=3k+1;b=3m+2\)

Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.

Vậy....

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

a: a=11k+2

b=11c+3

\(a\cdot b=\left(11k+2\right)\left(11c+3\right)\)

\(=121kc+33k+22c+6\)

\(=11\left(11kc+3k+2c\right)+6\) chia 11 dư 6

b: a=12k+7

b=18c+5

\(a\cdot b=\left(12k+7\right)\left(18c+5\right)\)

\(=216kc+60k+126c+35\)

\(=6\left(36kc+10k+21c\right)+35\) chia 6 dư 5